cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 6, 0, 2, 3, 1, 7, 1, 0, 2, 3, 0, 5, 4, 1, 8, 0, 5, 2, 3, 4, 9, 6, 2, 6, 3, 1, 5, 6, 2, 1, 1, 6, 1, 0, 0, 3, 7, 7, 6, 9, 3, 9, 4, 9, 5, 7, 8, 5, 5, 7, 2, 7, 3, 7, 7, 4, 6, 5, 3, 5, 2, 8, 5, 9, 8, 7, 8, 8, 8, 8, 6, 0, 2, 1, 6, 3, 3, 5, 4, 7, 2, 7, 5, 6, 6, 7, 3, 3, 9, 0, 4, 9, 4, 8, 8, 0, 6, 4, 1, 8, 0, 7, 5, 7
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2019

Keywords

Examples

			1.602317102305418052349626315621161003776939495785572...
		

Crossrefs

Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{k->oo} A145353(k)/k.
Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - Vaclav Kotesovec, Feb 27 2023
From Amiram Eldar, Dec 24 2024: (Start)
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} k/uphi(k) = lim_{m->oo} (1/m) * Sum_{k=1..m} A319677(k)/A319676(k), where uphi(k) is the unitary totient function (A047994).
Equals lim_{m->oo} (1/log(m)) * Sum_{k=1..m} 1/uphi(k) = lim_{m->oo} (1/log(m)) * A379517(m)/A379518(m).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A361967(k).
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k-1))).
Equals Product_{p prime} (1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1))). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A361012 Multiplicative with a(p^e) = sigma(e), where sigma = A000203.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 7, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 12, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 7, 7, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[1, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(sigma, factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import divisor_sigma, factorint
    def A361012(n): return prod(divisor_sigma(e) for e in factorint(n).values()) # Chai Wah Wu, Feb 28 2023
    

Formula

Dirichlet g.f.: Product_{p prime} (1 + Sum_{e>=1} sigma(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e) = 2.96008030202494141048182047811089469392843909592516341... = A361013

A327838 Decimal expansion of the asymptotic mean of the exponential totient function (A072911).

Original entry on oeis.org

1, 2, 5, 2, 7, 0, 7, 7, 8, 5, 3, 7, 5, 4, 4, 6, 1, 2, 6, 0, 5, 3, 7, 5, 0, 7, 5, 1, 9, 3, 4, 2, 8, 3, 0, 6, 0, 4, 3, 9, 2, 3, 7, 9, 6, 7, 1, 0, 8, 9, 1, 5, 3, 7, 3, 7, 4, 4, 8, 4, 9, 5, 1, 4, 0, 2, 9, 5, 7, 8, 3, 4, 3, 8, 6, 5, 4, 4, 2, 8, 6, 5, 0, 9, 5, 3, 7
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2019

Keywords

Examples

			1.252707785375446126053750751934283060439237967108915...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; m = 500; f[x_] := Log[1 + Sum[x^e * (EulerPhi[e] - EulerPhi[e - 1]), {e, 3, m}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[f[1/2] + NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{m->oo} (1/m) Sum_{k=1..m} A072911(k).
Equals Product_{p prime} (1 + Sum_{e >= 3} (phi(e) - phi(e-1))/p^e), where phi is the Euler totient function (A000010).

A361063 Multiplicative with a(p^e) = sigma_2(e), where sigma_2 = A001157.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 10, 5, 1, 1, 5, 1, 1, 1, 21, 1, 5, 1, 5, 1, 1, 1, 10, 5, 1, 10, 5, 1, 1, 1, 26, 1, 1, 1, 25, 1, 1, 1, 10, 1, 1, 1, 5, 5, 1, 1, 21, 5, 5, 1, 5, 1, 10, 1, 10, 1, 1, 1, 5, 1, 1, 5, 50, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 5, 5, 1, 1, 1, 21, 21, 1, 1, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[2, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> sigma(x, 2), factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import factorint, divisor_sigma
    def A361063(n): return prod(divisor_sigma(e,2) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
    

Formula

Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_2(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_2(e) - sigma_2(e-1)) / p^e) = 11.343154585178523783556367128387762286267199879648613456124659589127638983...

A361064 Multiplicative with a(p^e) = sigma_3(e), where sigma_3 = A001158.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 28, 9, 1, 1, 9, 1, 1, 1, 73, 1, 9, 1, 9, 1, 1, 1, 28, 9, 1, 28, 9, 1, 1, 1, 126, 1, 1, 1, 81, 1, 1, 1, 28, 1, 1, 1, 9, 9, 1, 1, 73, 9, 9, 1, 9, 1, 28, 1, 28, 1, 1, 1, 9, 1, 1, 9, 252, 1, 1, 1, 9, 1, 1, 1, 252, 1, 1, 9, 9, 1, 1, 1, 73, 73, 1, 1, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := DivisorSigma[3, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> sigma(x, 3), factor(n)[, 2])); \\ Amiram Eldar, Jan 07 2025
  • Python
    from math import prod
    from sympy import factorint, divisor_sigma
    def A361064(n): return prod(divisor_sigma(e,3) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
    

Formula

Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_3(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_3(e) - sigma_3(e-1)) / p^e) = 136.775196585091127831467103699999450735835551529525277016916082455332230986...
Showing 1-5 of 5 results.