A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).
1, 6, 0, 2, 3, 1, 7, 1, 0, 2, 3, 0, 5, 4, 1, 8, 0, 5, 2, 3, 4, 9, 6, 2, 6, 3, 1, 5, 6, 2, 1, 1, 6, 1, 0, 0, 3, 7, 7, 6, 9, 3, 9, 4, 9, 5, 7, 8, 5, 5, 7, 2, 7, 3, 7, 7, 4, 6, 5, 3, 5, 2, 8, 5, 9, 8, 7, 8, 8, 8, 8, 6, 0, 2, 1, 6, 3, 3, 5, 4, 7, 2, 7, 5, 6, 6, 7, 3, 3, 9, 0, 4, 9, 4, 8, 8, 0, 6, 4, 1, 8, 0, 7, 5, 7
Offset: 1
Examples
1.602317102305418052349626315621161003776939495785572...
Links
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (constant Z3).
- V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions - II, Indian J. Pure Appl. Math., Vol. 11 (1980), pp. 1334-1355 (eq. 2.37 and 3.18, pp. 1346 and 1354).
- Abdelhakim Smati and Jie Wu, On the exponential divisor function, Publications de l'Institut Mathématique, Vol. 61 (1997), pp. 21-32.
- László Tóth, An order result for the exponential divisor function, Publ. Math. Debrecen, Vol. 71, No. 1-2 (2007), pp. 165-171, arXiv preprint,, arXiv:0708.3552 [math.NT], 2007.
- László Tóth, Alternating sums concerning multiplicative arithmetic functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1 (section 4.10, p. 30).
- Jie Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, Journal de théorie des nombres de Bordeaux, Vol. 7, No. 1, (1995), pp. 133-141.
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
Formula
Equals lim_{k->oo} A145353(k)/k.
Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - Vaclav Kotesovec, Feb 27 2023
From Amiram Eldar, Dec 24 2024: (Start)
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} k/uphi(k) = lim_{m->oo} (1/m) * Sum_{k=1..m} A319677(k)/A319676(k), where uphi(k) is the unitary totient function (A047994).
Equals lim_{m->oo} (1/log(m)) * Sum_{k=1..m} 1/uphi(k) = lim_{m->oo} (1/log(m)) * A379517(m)/A379518(m).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A361967(k).
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k-1))).
Equals Product_{p prime} (1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1))). (End)
Extensions
More digits from Vaclav Kotesovec, Jun 13 2021