cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327872 Total number of nodes in all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (-1,1), and (1,-1) with the restriction that (-1,1) and (1,-1) are always immediately followed by (0,1).

Original entry on oeis.org

1, 4, 21, 148, 980, 6444, 41888, 270088, 1730079, 11023480, 69930146, 441988260, 2784820519, 17499028820, 109701885600, 686313858480, 4285914086100, 26721615383496, 166361793070466, 1034375862301240, 6423778211164860, 39850734775066644, 246976735839649218
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Crossrefs

Cf. A327871.

Programs

  • Maple
    b:= proc(x, y, t) option remember; (p-> p+[0, p[1]])(`if`(
           min(x, y)<0, 0, `if`(max(x, y)=0, [1, 0], b(x-1, y, 1)+
          `if`(t=1, b(x-1, y+1, 0)+b(x+1, y-1, 0), 0))))
        end:
    a:= n-> b(n$2, 0)[2]:
    seq(a(n), n=0..25);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = Function[p, p + {0, p[[1]]}][If[Min[x, y] < 0, {0, 0}, If[Max[x, y] == 0, {1, 0}, b[x - 1, y, 1] + If[t == 1, b[x - 1, y + 1, 0] + b[x + 1, y - 1, 0], 0]]]];
    a[n_] := b[n, n, 0][[2]];
    a /@ Range[0, 25] (* Jean-François Alcover, May 13 2020, after Maple *)

Formula

a(n) ~ sqrt(113 - 179/sqrt(13)) * (70 + 26*sqrt(13))^n * sqrt(n) / (sqrt(Pi) * 2^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Oct 12 2019

A344394 a(n) = binomial(n, n/2 - 1/4 + (-1)^n/4)*hypergeom([-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8], [n/2 + 7/4 + (-1)^n/4], 4).

Original entry on oeis.org

1, 1, 2, 5, 9, 25, 44, 133, 230, 726, 1242, 4037, 6853, 22737, 38376, 129285, 217242, 740554, 1239980, 4266830, 7123765, 24701425, 41141916, 143567173, 238637282, 837212650, 1389206210, 4896136845, 8112107475, 28703894775, 47495492400, 168640510725, 278722764954
Offset: 0

Views

Author

Peter Luschny, May 19 2021

Keywords

Comments

Related to the Motzkin triangle A064189 counting certain lattice paths.

Crossrefs

Cf. A026300, A064189, A026302 (even bisection), A344396 (odd bisection), A327871.

Programs

  • Maple
    alias(C=binomial):
    a := n -> add(C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)), j = 0..n): seq(a(n), n = 0..32);
  • Mathematica
    a[n_] := Binomial[n, n/2 - 1/4 + (-1)^n/4] Hypergeometric2F1[-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8, n/2 + 7/4 + (-1)^n/4, 4];
    Table[a[n], {n, 0, 32}]

Formula

a(n) = Sum_{j = 0..n} C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)).
a(n) = A064189(n, floor(n/2)), the middle column of the Motzkin triangle.
a(n) = A026300(n, ceiling(n/2)).

A344396 a(n) = binomial(2*n + 1, n)*hypergeom([-(n + 1)/2, -n/2], [n + 2], 4).

Original entry on oeis.org

1, 5, 25, 133, 726, 4037, 22737, 129285, 740554, 4266830, 24701425, 143567173, 837212650, 4896136845, 28703894775, 168640510725, 992671051482, 5853000551090, 34562387229046, 204368928058958, 1209916827501876, 7170955214476509, 42543879586512435, 252638095187722437
Offset: 0

Views

Author

Peter Luschny, May 19 2021

Keywords

Comments

Related to the Motzkin triangle A064189 counting certain lattice paths.

Crossrefs

Programs

  • Maple
    alias(C=binomial):
    a := n -> add(C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)), j = 0..2*n+1): seq(a(n), n=0..23);
  • Mathematica
    a[n_] := Binomial[2 n + 1, n] Hypergeometric2F1[-(n + 1)/2, -n/2, n + 2, 4];
    Table[a[n], {n, 0, 23}]

Formula

a(n) = Sum_{j=0..2*n+1} C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)).
a(n) = A064189(2*n+1, n).
a(n) = A026300(2*n+1, n+1).
a(n) ~ sqrt((5242 + 18674/sqrt(13))/2187) * ((70 + 26*sqrt(13))/27)^n / sqrt(Pi*n). - Vaclav Kotesovec, May 19 2021
From Peter Bala, Aug 03 2023: (Start)
P-recursive: 3*(13*n - 4)*(3*n + 2)*(3*n + 1)*(n + 1)*a(n) = 2*(2*n + 1)*(455*n^3 + 315*n^2 - 44*n - 24)*a(n-1) + 36*(13*n + 9)*(2*n + 1)*(2*n - 1)*n*a(n-2) with a(0) = 1 and a(1) = 5.
a(n) = (1/2)*A027908(n+1). (End)

A344395 a(n) = binomial(4*n - 1, 2*n - 1)*hypergeom([-n, -n + 1/2], [2*n + 1], 4).

Original entry on oeis.org

1, 5, 133, 4037, 129285, 4266830, 143567173, 4896136845, 168640510725, 5853000551090, 204368928058958, 7170955214476509, 252638095187722437, 8931025389858103602, 316640855103349347725, 11254413331736554364987, 400893874585938826203909, 14307778459379093347171266
Offset: 0

Views

Author

Peter Luschny, May 19 2021

Keywords

Comments

Related to the Motzkin triangle A064189 counting certain lattice paths.

Crossrefs

Programs

  • Maple
    alias(C=binomial):
    a := n -> `if`(n = 0, 1, add(C(4*n - 1, j)*(C(4*n - 1 - j, j + 2*n - 1) - C(4*n - 1 - j, j + 2*n + 1)), j = 0..4*n-1)): seq(a(n), n = 0..17);
  • Mathematica
    a[n_] := Binomial[4 n - 1, 2 n - 1] Hypergeometric2F1[-n, -n + 1/2, 2 n + 1, 4];
    Table[a[n], {n, 0, 19}]

Formula

a(n) = Sum_{j=0..4*n-1} C(4*n-1, j)*(C(4*n-1-j, j+2*n-1) - C(4*n-1-j, j+2*n+1)) for n >= 1.
a(n) = A064189(4*n - 1, 2*n - 1) for n >= 1.
a(n) = A344394(4*n - 1) for n >= 1.
a(n) ~ sqrt(1014 + 156*sqrt(13)) * (13688 + 3640*sqrt(13))^n / (52 * sqrt(Pi*n) * 3^(6*n+1)). - Vaclav Kotesovec, Feb 18 2024
D-finite with recurrence +9*n*(6*n-1)*(3*n-1)*(3835115277622*n -6057563812695) *(2*n-1)*(3*n-2) *(6*n-5)*a(n) +2*(776430552534185648*n^7 -13254965233720706112*n^6 +77698256107321929944*n^5 -233839293644869788720*n^4 +406279253239920624227*n^3 -412808144693534857728*n^2 +228023561050132883751*n -52874097275943488160)*a(n-1) -108*(4*n-5)*(4*n-7) *(51631651831183544*n^5 -528937515408392660*n^4 +2125620894576233062*n^3 -4194554621940993427*n^2 +4055650255694760927*n -1531029729082241880)*a(n-2) +402408*(4*n-11)*(n-2) *(4*n-5)*(4*n-9)*(330342177838*n -391995025711)*(2*n-5) *(4*n-7)*a(n-3)=0. - R. J. Mathar, Mar 25 2024
Showing 1-4 of 4 results.