A327872
Total number of nodes in all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (-1,1), and (1,-1) with the restriction that (-1,1) and (1,-1) are always immediately followed by (0,1).
Original entry on oeis.org
1, 4, 21, 148, 980, 6444, 41888, 270088, 1730079, 11023480, 69930146, 441988260, 2784820519, 17499028820, 109701885600, 686313858480, 4285914086100, 26721615383496, 166361793070466, 1034375862301240, 6423778211164860, 39850734775066644, 246976735839649218
Offset: 0
-
b:= proc(x, y, t) option remember; (p-> p+[0, p[1]])(`if`(
min(x, y)<0, 0, `if`(max(x, y)=0, [1, 0], b(x-1, y, 1)+
`if`(t=1, b(x-1, y+1, 0)+b(x+1, y-1, 0), 0))))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..25);
-
b[x_, y_, t_] := b[x, y, t] = Function[p, p + {0, p[[1]]}][If[Min[x, y] < 0, {0, 0}, If[Max[x, y] == 0, {1, 0}, b[x - 1, y, 1] + If[t == 1, b[x - 1, y + 1, 0] + b[x + 1, y - 1, 0], 0]]]];
a[n_] := b[n, n, 0][[2]];
a /@ Range[0, 25] (* Jean-François Alcover, May 13 2020, after Maple *)
A344394
a(n) = binomial(n, n/2 - 1/4 + (-1)^n/4)*hypergeom([-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8], [n/2 + 7/4 + (-1)^n/4], 4).
Original entry on oeis.org
1, 1, 2, 5, 9, 25, 44, 133, 230, 726, 1242, 4037, 6853, 22737, 38376, 129285, 217242, 740554, 1239980, 4266830, 7123765, 24701425, 41141916, 143567173, 238637282, 837212650, 1389206210, 4896136845, 8112107475, 28703894775, 47495492400, 168640510725, 278722764954
Offset: 0
-
alias(C=binomial):
a := n -> add(C(n, j)*(C(n - j, j + n/2 - 1/4 + (-1)^n/4) - C(n - j, j + n/2 + 7/4 + (-1)^n/4)), j = 0..n): seq(a(n), n = 0..32);
-
a[n_] := Binomial[n, n/2 - 1/4 + (-1)^n/4] Hypergeometric2F1[-n/4 - 1/8 + (-1)^n/8, -n/4 + 3/8 + (-1)^n/8, n/2 + 7/4 + (-1)^n/4, 4];
Table[a[n], {n, 0, 32}]
A344396
a(n) = binomial(2*n + 1, n)*hypergeom([-(n + 1)/2, -n/2], [n + 2], 4).
Original entry on oeis.org
1, 5, 25, 133, 726, 4037, 22737, 129285, 740554, 4266830, 24701425, 143567173, 837212650, 4896136845, 28703894775, 168640510725, 992671051482, 5853000551090, 34562387229046, 204368928058958, 1209916827501876, 7170955214476509, 42543879586512435, 252638095187722437
Offset: 0
-
alias(C=binomial):
a := n -> add(C(2*n + 1, j)*(C(2*n + 1 - j, j + n) - C(2*n + 1 - j, j + n + 2)), j = 0..2*n+1): seq(a(n), n=0..23);
-
a[n_] := Binomial[2 n + 1, n] Hypergeometric2F1[-(n + 1)/2, -n/2, n + 2, 4];
Table[a[n], {n, 0, 23}]
A344395
a(n) = binomial(4*n - 1, 2*n - 1)*hypergeom([-n, -n + 1/2], [2*n + 1], 4).
Original entry on oeis.org
1, 5, 133, 4037, 129285, 4266830, 143567173, 4896136845, 168640510725, 5853000551090, 204368928058958, 7170955214476509, 252638095187722437, 8931025389858103602, 316640855103349347725, 11254413331736554364987, 400893874585938826203909, 14307778459379093347171266
Offset: 0
-
alias(C=binomial):
a := n -> `if`(n = 0, 1, add(C(4*n - 1, j)*(C(4*n - 1 - j, j + 2*n - 1) - C(4*n - 1 - j, j + 2*n + 1)), j = 0..4*n-1)): seq(a(n), n = 0..17);
-
a[n_] := Binomial[4 n - 1, 2 n - 1] Hypergeometric2F1[-n, -n + 1/2, 2 n + 1, 4];
Table[a[n], {n, 0, 19}]
Showing 1-4 of 4 results.
Comments