A327878 Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromes using exactly k different symbols, 1 <= k <= 1 + floor(n/2).
1, 0, 1, 0, 2, 0, 3, 3, 0, 6, 6, 0, 7, 21, 12, 0, 14, 36, 24, 0, 18, 90, 132, 60, 0, 28, 150, 240, 120, 0, 39, 339, 900, 960, 360, 0, 62, 540, 1560, 1800, 720, 0, 81, 1149, 4968, 9300, 7920, 2520, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 175, 3765, 24588, 71400, 103320, 73080, 20160
Offset: 1
Examples
Triangle begins: 1; 0, 1; 0, 2; 0, 3, 3; 0, 6, 6; 0, 7, 21, 12; 0, 14, 36, 24; 0, 18, 90, 132, 60; 0, 28, 150, 240, 120; 0, 39, 339, 900, 960, 360; 0, 62, 540, 1560, 1800, 720; 0, 81, 1149, 4968, 9300, 7920, 2520; 0, 126, 1806, 8400, 16800, 15120, 5040; 0, 175, 3765, 24588, 71400, 103320, 73080, 20160; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2600
Crossrefs
Programs
-
PARI
T(n,k) = {sumdiv(n, d, moebius(n/d) * k! * (stirling((d+1)\2,k,2) + stirling(d\2+1,k,2)))/2}
Comments