cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327909 a(n) is the smallest start of a run of n or more integers having a prime factor greater than n.

Original entry on oeis.org

2, 5, 13, 19, 55, 65, 113, 151, 151, 226, 364, 406, 736, 736, 1057, 1057, 1409, 1409, 2059, 2059, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 6007, 6961, 6961, 10305, 12013, 12013, 12013, 12013, 12013, 12026, 12026, 17501, 17501, 17501, 17501, 20833, 20833
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 06 2019

Keywords

Comments

Is a(n) an upper bound on A327265(n)? A327265(n) = a(n) at n = 1, 2, 4, and 9.

Examples

			      |     prime     |
   k  | factorization | gpf(k) | tau(k)
  ----+---------------+--------+-------
  151 |      151      |   151  |   2
  152 |   2^3 * 19    |    19  |   8
  153 |   3^2 * 17    |    17  |   6
  154 |  2 * 7 * 11   |    11  |   8
  155 |    5 * 31     |    31  |   4
  156 | 2^2 * 3 * 13  |    13  |  12
  157 |      157      |   157  |   2
  158 |    2 * 79     |    79  |   4
  159 |    3 * 53     |    53  |   4
		

Crossrefs

Cf. A006530 (greatest prime factor of n).

Programs

  • Maple
    A:= Vector(100): A[1]:= 2: count:= 1:
    B:= Vector(100):
    for i from 2 while count < 100 do
      p:= max(numtheory:-factorset(i));
      for j from 1 to min(p-1,100) do
        if B[j] = 0 then B[j]:= i fi
      od;
      for j from p to 100 do
        if B[j] > 0 and B[j] <= i-j and A[j] = 0 then A[j]:= B[j]; count:= count+1; fi
      od;
      if p <= 99 then B[p..100]:= 0 fi;
    od:
    convert(A,list); # Robert Israel, Jan 23 2023
  • PARI
    a(n) = {my(k=1); x=0; while(xn, x++, x=0)); k-n+1;} \\ Jinyuan Wang, Oct 26 2019