A327909 a(n) is the smallest start of a run of n or more integers having a prime factor greater than n.
2, 5, 13, 19, 55, 65, 113, 151, 151, 226, 364, 406, 736, 736, 1057, 1057, 1409, 1409, 2059, 2059, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 6007, 6961, 6961, 10305, 12013, 12013, 12013, 12013, 12013, 12026, 12026, 17501, 17501, 17501, 17501, 20833, 20833
Offset: 1
Keywords
Examples
| prime | k | factorization | gpf(k) | tau(k) ----+---------------+--------+------- 151 | 151 | 151 | 2 152 | 2^3 * 19 | 19 | 8 153 | 3^2 * 17 | 17 | 6 154 | 2 * 7 * 11 | 11 | 8 155 | 5 * 31 | 31 | 4 156 | 2^2 * 3 * 13 | 13 | 12 157 | 157 | 157 | 2 158 | 2 * 79 | 79 | 4 159 | 3 * 53 | 53 | 4
Links
- Thomas Garrison, Table of n, a(n) for n = 1..369
Programs
-
Maple
A:= Vector(100): A[1]:= 2: count:= 1: B:= Vector(100): for i from 2 while count < 100 do p:= max(numtheory:-factorset(i)); for j from 1 to min(p-1,100) do if B[j] = 0 then B[j]:= i fi od; for j from p to 100 do if B[j] > 0 and B[j] <= i-j and A[j] = 0 then A[j]:= B[j]; count:= count+1; fi od; if p <= 99 then B[p..100]:= 0 fi; od: convert(A,list); # Robert Israel, Jan 23 2023
-
PARI
a(n) = {my(k=1); x=0; while(x
n, x++, x=0)); k-n+1;} \\ Jinyuan Wang, Oct 26 2019
Comments