A327935 Numbers for which the smallest prime factor of their arithmetic derivative is 5.
6, 46, 75, 106, 150, 166, 175, 226, 250, 266, 325, 346, 350, 406, 429, 466, 475, 526, 546, 550, 586, 646, 650, 682, 706, 750, 759, 766, 775, 826, 847, 850, 886, 925, 950, 966, 1006, 1050, 1075, 1083, 1106, 1126, 1150, 1186, 1209, 1246, 1250, 1254, 1306, 1326, 1342, 1366, 1406, 1419, 1421, 1450, 1486, 1525, 1526, 1546
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 A086134(n) = { my(d=A003415(n)); if(d<=1,0,factor(d)[1, 1]); }; isA327935(n) = (5==A086134(n));
-
Python
from itertools import count, islice from sympy import factorint def A327935_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n: (m:=sum((n*e//p for p,e in factorint(n).items())))&1 and m%3 and not m%5, count(max(startvalue,2))) A327935_list = list(islice(A327935_gen(),40)) # Chai Wah Wu, Nov 04 2022
Comments