A327939 Multiplicative with a(p^e) = p^(e-(e mod p)).
1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 27, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 1, 64, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 108, 1, 1, 1, 16
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Christian Krause, LODA, an assembly language, a computational model and a tool for mining integer sequences.
Programs
-
Mathematica
f[p_, e_] := p^(e - Mod[e, p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2023 *)
-
PARI
A327939(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]-(f[k,2]%f[k,1]))); factorback(f); };
Formula
Multiplicative with a(p^e) = p^(e-(e mod p)).
a(n) = n / A327938(n).
Comments