cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A327936 Multiplicative with a(p^e) = p if e >= p, otherwise 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Examples

			For n = 12 = 2^2 * 3^1, only prime factor p = 2 satisfies p^p | 12, thus a(12) = 2.
For n = 108 = 2^2 * 3^3, both prime factors p = 2 and p = 3 satisfy p^p | 108, thus a(108) = 2*3 = 6.
		

Crossrefs

Differs from A129252 for the first time at n=108.

Programs

  • Mathematica
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; IntegerQ@ p :> If[e >= p, p, 1]] &, 120] (* Michael De Vlieger, Oct 01 2019 *)
  • PARI
    A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]>=f[k,1])); factorback(f); };

Formula

Multiplicative with a(p^e) = p if e >= p, otherwise 1.
A001221(a(n)) = A129251(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (p-1)/p^p) = 1.3443209052633459342... . - Amiram Eldar, Nov 07 2022

A327938 Multiplicative with a(p^e) = p^(e mod p).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 1, 7, 29, 30, 31, 2, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 2, 55, 14, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71, 18, 73, 74, 75, 19, 77, 78, 79, 5, 3, 82, 83, 21, 85, 86, 87, 22
Offset: 1

Views

Author

Antti Karttunen, Oct 01 2019

Keywords

Comments

All terms are in A048103.

Crossrefs

Differs from A065883 for the first time at n=27.

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, p]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 07 2022 *)
  • PARI
    A327938(n) = { my(f = factor(n)); for(k=1, #f~, f[k,2] = (f[k,2]%f[k,1])); factorback(f); };

Formula

Multiplicative with a(p^e) = p^(e mod p).
a(n) = n / A327939(n).
For all n, A129251(a(n)) = 0, A327936(a(n)) = 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1/(1+1/p^p)) = 0.38559042841678887219... . - Amiram Eldar, Nov 07 2022

A342007 Multiplicative with a(p^e) = p^floor(e/p).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Times @@ Map[#1^Floor[#2/#1] & @@ # &, FactorInteger[#]] &, 105] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A342007(n) = { my(f = factor(n)); for(k=1, #f~, f[k, 2] = floor(f[k, 2]/f[k, 1])); factorback(f); };

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (p-1)/(p^p-p)) = 1.6270951877598772517... . - Amiram Eldar, Nov 07 2022

A365632 The number of divisors of n that are terms of A072873.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2023

Keywords

Comments

The sum of these divisors is A365633(n) and the largest of them is A327939(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + Floor[e/p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i,2]\f[i,1]);}

Formula

Multiplicative with a(p^e) = 1 + floor(e/p).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} p^p/(p^p-1) = 1.3850602852... .

Extensions

Data corrected by Amiram Eldar, Sep 20 2023

A368329 The largest term of A054743 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 81, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differs from A360540 at n = 27.
The largest divisor d of n such that e > p for all prime powers p^e in the prime factorization of d (i.e., e >= 1 and p^(e+1) does not divide d).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= p, 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] <= f[i,1], 1, f[i,1]^f[i,2]));}

Formula

Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = p^e if e > p.
A034444(a(n)) = A368330(n).
a(n) >= 1, with equality if and only if n is in A207481.
a(n) <= n, with equality if and only if n is in A054743.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^((p+2)*s-1) - 1/p^((p+2)*(s-1)+1) - 1/p^((p+1)*s) + 1/p^((p+1)*(s-1))).

A368333 The largest term of A054744 that divide n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 8, 1, 1, 27, 4, 1, 1, 1, 32, 1, 1, 1, 4, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 1, 64, 1, 1, 1, 4, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

The largest divisor d of n such that e >= p for all prime powers p^e in the prime factorization of d (i.e., e >= 1 and p^(e+1) does not divide d).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < p, 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i,1]^f[i,2]));}

Formula

Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = p^e if e >= p.
A034444(a(n)) = A368334(n).
a(n) >= 1, with equality if and only if n is in A048103.
a(n) <= n, with equality if and only if n is in A054744.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^(p*s) + 1/p^(p*(s-1)) + 1/p^((p+1)*s-1) - 1/p^((p+1)*(s-1)+1)).

A368334 The number of terms of A054744 that are unitary divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Comments

First differs from A081117 at n = 28.
Also, the number of terms of A072873 that are unitary divisors of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < p, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, 2));}

Formula

Multiplicative with a(p^e) = 1 if e < p, and a(p^e) = 2 if e >= p.
a(n) = A034444(A368333(n)).
a(n) = A034444(A327939(n)).
a(n) >= 1, with equality if and only if n is in A048103.
a(n) <= A034444(n), with equality if and only if n is in A054744.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(p*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/p^p) = 1.29671268566745796443... .

A368336 The number of divisors of the largest term of A072873 that divides of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e - Mod[e, p] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,2] - f[i,2]%f[i,1] + 1);}

Formula

a(n) = A000005(A327939(n)).
Multiplicative with a(p^e) = e - (e mod p) + 1.
a(n) >= 1, with equality if and only if n is in A048103.
a(n) <= A000005(n), with equality if and only if n is in A072873.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + p/(p^p-1)) = 1.86196549645040699446... .

A359594 Multiplicative with a(p^e) = p^e if p divides e, 1 otherwise.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 27, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 27, 1, 1, 1, 1, 1, 4, 1, 1, 1, 64, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 108
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2023

Keywords

Comments

Each term a(n) divides both A085731(n) and A327939(n).

Crossrefs

Cf. A359593.
Cf. also A085731, A327939.

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, p], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 09 2023 *)
  • PARI
    A359594(n) = { my(f = factor(n)); prod(k=1, #f~, f[k, 1]^(f[k,2]*!(f[k, 2]%f[k, 1]))); };
    
  • Python
    from math import prod
    from sympy import factorint
    def A359594(n): return prod(p**e for p, e in factorint(n).items() if not e%p) # Chai Wah Wu, Jan 10 2023

Formula

a(n) = n / A359593(n).

A365633 The sum of divisors of n that are terms of A072873.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2023

Keywords

Comments

The number of these divisors is A365632(n) and the largest of them is A327939(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(Floor[e/p] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(1+f[i,2] \ f[i,1])-1)/(f[i,1] - 1));}

Formula

Multiplicative with a(p^e) = (p^(floor(e/p)+1) - 1)/(p - 1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (A332653(p)/(p^(p-1)-1) - 1/(p*(p-1))) = 2.253624924813... .
Showing 1-10 of 11 results. Next