A327971 Bitwise XOR of trajectories of rule 30 and its mirror image, rule 86, when both are started from a lone 1 cell: a(n) = A110240(n) XOR A265281(n).
0, 0, 10, 20, 130, 396, 2842, 4420, 38610, 124220, 684490, 1385044, 8891330, 26281036, 192525274, 269101060, 2454365330, 8588410876, 43860512138, 89059958420, 551714970626, 1663794165260, 12235920695450, 19683098342340, 164315052318034, 538162708968636, 2894532467106378, 6192136868790228, 37503903254935874, 114926395086966988, 814341599153559130
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..1023
- Antti Karttunen, Terms up to a(255) drawn as binary strings, with 1 bit = 3x3 pixels resolution
- Antti Karttunen, Terms up to a(1023) drawn as binary strings, with 1 bit = 1 pixel resolution
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
PARI
A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160. A110240(n) = if(!n,1,A269160(A110240(n-1))); A269161(n) = bitxor(4*n, bitor(2*n, n)); A265281(n) = if(!n,1,A269161(A265281(n-1))); A327971(n) = bitxor(A110240(n), A265281(n));
-
PARI
A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2)); A327971write(up_to) = { my(s=1, n=0); for(n=0,up_to, write("b327971.txt", n, " ", bitxor(s, A030101(s))); s = A269160(s)); };
-
Python
def A269160(n): return(n^((n<<1)|(n<<2))) def A269161(n): return((n<<2)^((n<<1)|n)) def genA327971(): '''Yield successive terms of A327971.''' s1 = 1 s2 = 1 while True: yield (s1^s2) s1 = A269160(s1) s2 = A269161(s2)
Comments