A327975 Breadth-first reading of the subtree rooted at 5 of the tree where each parent node is the arithmetic derivative (A003415) of all its children.
5, 6, 9, 14, 33, 49, 62, 94, 177, 817, 961, 445, 913, 1633, 2173, 2209, 1146, 886, 1822, 4414, 19193, 25829, 32393, 41033, 47429, 57929, 64133, 88229, 101753, 111173, 116729, 129413, 138233, 148553, 160229, 173093, 183929, 188453, 208613, 216773, 232229, 235913, 244229, 249929, 257573, 262793, 272633, 278153, 282533, 288329, 294473, 304613, 316229, 320933, 322853, 323429, 327653, 328313, 1155, 2649
Offset: 1
Examples
Because we have A003415(5) = 1, A003415(6) = 5, A003415(9) = 6, A003415(14) = 9, A003415(33) = A003415(49) = 14, A003415(62) = 33, etc, this subtree is laid out as below. The terms of this sequence are obtained by scanning each successive level of the tree from left to right, from the node 5 onward: (0) | (1) | 5 | 6 | 9 | 14________________ | | 33 49 | | 62________ 94_____________________________ | | | | | | | | | | | | | | | | 177 817 961 445 913 1633 2173 2209 | | | | | | | | 1146 886 1822 4414 | | | | | | | | (19193, (1155, (19921, ..., 829921) (22045, ..., 4870849) 25829, 2649, [49 children for 4414] ..., ..., [27 children for 1822] 328313) 196249) [19 children for 886] [38 children for 1146] The row lengths thus start as: 1, 1, 1, 1, 2, 2, 8, 4, 133 (= 38+19+27+49), ...
Links
- Victor Ufnarovski and Bo Ahlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
Crossrefs
Programs
-
PARI
A002620(n) = ((n^2)>>2); A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 A327975list(e) = { my(lista=List([5]), f); for(n=1, e, f = lista[n]; for(k=1,1+A002620(f),if(A003415(k)==f, listput(lista,k)))); Vec(lista); }; v328975 = A327975list(21); A327975(n) = v328975[n];
-
Sage
# uses[A003415] def A327975(): '''Breadth-first reading of irregular subtree rooted at 5, defined by the edge-relation A003415(child) = parent.''' yield 5 for x in A327975(): for k in [1 .. 1+(x*x)//2]: if A003415(k) == x: yield k def take(n, g): '''Returns a list composed of the next n elements returned by generator g.''' z = [] if 0 == n: return z for x in g: z.append(x) if n > 1: n = n-1 else: return(z) take(60, A327975())
Comments