A327976 Bitwise XOR of trajectories (centrally aligned) of rule 30, and its mirror image, rule 86, when both are started from a lone 1-bit, with the latter delayed by one step: a(n) = A110240(n) XOR 2*A265281(n-1).
5, 23, 73, 359, 1233, 6143, 19225, 93495, 325729, 1518895, 4833289, 23453735, 81443089, 398815039, 1271974489, 6168932215, 21231239841, 99197620591, 314863189193, 1541326542823, 5312985402193, 26258203294847, 82884499362201, 400683454289591, 1406328980294113, 6532877164215983, 20744329255918985, 100303645024039591
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160. A110240(n) = if(!n,1,A269160(A110240(n-1))); A327973(n) = bitxor(A110240(n), 2*A110240(n-1)); A269161(n) = bitxor(4*n, bitor(2*n, n)); A265281(n) = if(!n,1,A269161(A265281(n-1))); A327976(n) = bitxor(A110240(n), 2*A265281(n-1)); \\ Use this one for writing b-files: A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2)); A327976write(up_to) = { my(s=1, t, n=0); for(n=1,up_to, t = A269160(s); write("b327976.txt", n, " ", bitxor(2*A030101(s), t)); s = t); };
-
Python
def A269160(n): return(n^((n<<1)|(n<<2))) def A269161(n): return((n<<2)^((n<<1)|n)) def genA327976(): '''Yield successive terms of A327976.''' s1 = 1 s2 = 1 while True: s1 = A269160(s1) yield (s1^(s2<<1)) s2 = A269161(s2)