A327978 Numbers whose arithmetic derivative (A003415) is a primorial number (A002110) > 1.
9, 161, 209, 221, 2189, 2561, 3281, 3629, 5249, 5549, 6401, 7181, 7661, 8321, 8909, 9089, 9869, 10001, 10349, 10541, 10961, 11009, 11021, 29861, 38981, 52601, 66149, 84101, 93029, 97481, 132809, 150281, 158969, 163301, 197669, 214661, 227321, 235721, 285449, 321989, 338021, 357881, 369701, 381449, 385349, 416261, 420089, 442889
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1078 terms from Antti Karttunen)
- Victor Ufnarovski and Bo Ã…hlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to primorial numbers
Crossrefs
Programs
-
Mathematica
ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); primQ[n_] := Max[(f = FactorInteger[n])[[;;,2]]] == 1 && PrimePi[f[[-1,1]]] == Length[f]; Select[Range[10^4], primQ[ad[#]] &] (* Amiram Eldar, Oct 11 2019 *)
-
PARI
A002620(n) = ((n^2)>>2); A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; isA327978flat(n) = { my(u=A003415(n)); ((u>1)&&(1==A276150(u))); }; \\ Slow! k=0; for(n=1,A002620(30030),if(isA327978flat(n), k++; write("b327978.txt", k, " ", n)));
Formula
A327969(a(n)) = 4 for all n.
Comments