A327980 Distances between successive zeros in A051023, the middle column of rule-30 1-D cellular automaton, when started from a lone 1 cell.
4, 1, 3, 1, 1, 2, 3, 1, 2, 1, 4, 2, 4, 1, 4, 2, 2, 3, 1, 1, 1, 3, 1, 2, 2, 3, 2, 2, 7, 1, 1, 1, 5, 1, 1, 2, 2, 4, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 4, 1, 1, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 6, 4, 2, 1, 4, 1, 1, 4, 2, 4, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 5, 1, 7, 1, 1, 1, 1, 1, 8, 3, 1, 2, 3, 4, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The evolution of one-dimensional cellular automaton rule 30 proceeds as follows, when started from a single alive (1) cell: 0: (1) 1: 1(1)1 2: 11(0)01 3: 110(1)111 4: 1100(1)0001 5: 11011(1)10111 6: 110010(0)001001 7: 1101111(0)0111111 8: 11001000(1)11000001 9: 110111101(1)001000111 10: 1100100001(0)1111011001 11: 11011110011(0)10000101111 12: 110010001110(0)110011010001 When noting up the distances between successive 0's in its central column (indicated here with parentheses), we obtain 6-2 (as the first 0 is on row 2, and the second is on row 6), 7-6, 10-7, 11-10, 12-11, ..., that is, the first terms of this sequence: 4, 1, 3, 1, 1, ...
Links
Programs
-
Mathematica
A327980list[upto_]:=Differences[Flatten[Position[CellularAutomaton[30,{{1},0},{upto,{{0}}}],0]]];A327980list[300] (* Paolo Xausa, Jun 01 2023 *)
-
PARI
up_to = 105; A269160(n) = bitxor(n, bitor(2*n, 4*n)); A327980list(up_to) = { my(v=vector(up_to), s=25, n=2, on=n, k=0); while(k
A269160(s); if(!((s>>n)%2), k++; v[k] = (n-on); on=n)); (v); } v327980 = A327980list(up_to); A327980(n) = v327980[n];
Comments