A327997 Triangle read by rows: coefficients of the polynomials given by KummerU(-n, 1 - n - x, 3).
1, 3, 1, 9, 7, 1, 27, 38, 12, 1, 81, 192, 101, 18, 1, 243, 969, 755, 215, 25, 1, 729, 5115, 5494, 2205, 400, 33, 1, 2187, 29322, 40971, 21469, 5355, 679, 42, 1, 6561, 187992, 323658, 209356, 66619, 11452, 1078, 52, 1, 19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1
Offset: 0
Examples
The triangle starts: 1; 3, 1; 9, 7, 1; 27, 38, 12, 1; 81, 192, 101, 18, 1; 243, 969, 755, 215, 25, 1; 729, 5115, 5494, 2205, 400, 33, 1; 2187, 29322, 40971, 21469, 5355, 679, 42, 1; 6561, 187992, 323658, 209356, 66619, 11452, 1078, 52, 1; 19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1;
Crossrefs
Programs
-
Maple
egf := exp(3*t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n): seq(print(n!*seq(coeff(p(n), x, k), k=0..n)), n=0..9);
-
Mathematica
p [n_] := HypergeometricU[-n, 1 - n - x, 3]; Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten
-
PARI
T(n, k) = sum(j=k, n, 3^(n-j)*binomial(n, j)*abs(stirling(j, k, 1))); \\ Seiichi Manyama, Apr 19 2025
Formula
T(n, k) = n!*[x^k] p(n) where p(n) = [t^n] exp(3*t)*(1-t)^(-x).
From Igor Victorovich Statsenko, Feb 14 2025: (Start)
T(m, n, k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), for m = -3.
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-3. (End)
Comments