cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327997 Triangle read by rows: coefficients of the polynomials given by KummerU(-n, 1 - n - x, 3).

Original entry on oeis.org

1, 3, 1, 9, 7, 1, 27, 38, 12, 1, 81, 192, 101, 18, 1, 243, 969, 755, 215, 25, 1, 729, 5115, 5494, 2205, 400, 33, 1, 2187, 29322, 40971, 21469, 5355, 679, 42, 1, 6561, 187992, 323658, 209356, 66619, 11452, 1078, 52, 1, 19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1
Offset: 0

Views

Author

Peter Luschny, Oct 27 2019

Keywords

Comments

KummerU(-n, 1-n-x, 1) are the Charlier polynomials with coefficients in A094816, the coefficients of KummerU(-n, 1-n-x, 2) are in |A137346|.
The exponential generating function of this family of sequences of polynomials is in its general form (1-t)^(-x)*exp(alpha*t) with a parameter alpha.

Examples

			The triangle starts:
      1;
      3,       1;
      9,       7,       1;
     27,      38,      12,       1;
     81,     192,     101,      18,      1;
    243,     969,     755,     215,     25,      1;
    729,    5115,    5494,    2205,    400,     33,     1;
   2187,   29322,   40971,   21469,   5355,    679,    42,    1;
   6561,  187992,  323658,  209356,  66619,  11452,  1078,   52,  1;
  19683, 1370745, 2764926, 2111318, 813645, 176295, 22302, 1626, 63, 1;
		

Crossrefs

A094816 (z=1), |A137346| (z=2), this sequence (z=3).
Columns k=0..3 give A000244, A346395, A381052, A382701.
Row sums in A053486.

Programs

  • Maple
    egf := exp(3*t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n):
    seq(print(n!*seq(coeff(p(n), x, k), k=0..n)), n=0..9);
  • Mathematica
    p [n_] := HypergeometricU[-n, 1 - n - x, 3];
    Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten
  • PARI
    T(n, k) = sum(j=k, n, 3^(n-j)*binomial(n, j)*abs(stirling(j, k, 1))); \\ Seiichi Manyama, Apr 19 2025

Formula

T(n, k) = n!*[x^k] p(n) where p(n) = [t^n] exp(3*t)*(1-t)^(-x).
From Igor Victorovich Statsenko, Feb 14 2025: (Start)
T(m, n, k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), for m = -3.
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-3. (End)