cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328005 Number of distinct coefficients in functional composition of 1 + x + ... + x^(n-1) with itself.

Original entry on oeis.org

0, 1, 2, 4, 8, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405, 1459
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 01 2019

Keywords

Comments

Sum_{i=0..n-1} x^i = (x^n - 1)/(x - 1).

Examples

			For n = 4, the composition of 1 + x + x^2 + x^3 with itself is 1 + (1 + x + x^2 + x^3) + (1 + x + x^2 + x^3)^2 + (1 + x + x^2 + x^3)^3 = 4 + 6 x + 10 x^2 + 15 x^3 + 15 x^4 + 14 x^5 + 11 x^6 + 6 x^7 + 3 x^8 + x^9 that has 8 distinct coefficients [1, 3, 4, 6, 10, 11, 14, 15], so a(4) = 8.
The first few polynomials p_n(x) are 0, 1, x + 2, x^4 + 2*x^3 + 4*x^2 + 3*x + 3, ... with p_n(1) = A023037(n), n >= 0.
		

Crossrefs

Programs

  • Maple
    f:= n-> unapply(add(x^j, j=0..n-1), x):
    a:= n-> nops({coeffs(expand((f(n)@@2)(x)))} minus {0}):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 01 2019
  • Mathematica
    Table[With[{s = Sum[x^k, {k, 0, n - 1}]}, Length[Union[CoefficientList[Expand[s /. x -> s], x]]]], {n, 0, 53}]
  • PARI
    a(n)={my(p=(1-x^n)/(1-x)); #Set(Vec(subst(p,x,p)))} \\ Andrew Howroyd, Oct 01 2019
    
  • SageMath
    def A328005(n):
        R. = PolynomialRing(ZZ)
        q = R(sum(x^k for k in range(n)))
        return len(Set(q.substitute(x=q).list()))
    print([A328005(n) for n in range(55)]) # Peter Luschny, Oct 02 2019

Formula

It appears that a(n) = (2*n^2 + (-1)^n + 3)/4 for n >= 5.
Conjectured g.f.: (x^7 - x^6 - x^5 + 2*x^3 + 1)*x/((x + 1)*(1 - x)^3).