A328094 Expansion of (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z))^6.
1, 12, 60, 160, 252, 312, 568, 1200, 2004, 3036, 4680, 7008, 10264, 14568, 21024, 31280, 42012, 54408, 75284, 99600, 129912, 168688, 210240, 272460, 336048, 404052, 516432, 618224, 736272, 884712, 1033008, 1244976, 1439820, 1666800, 1953288, 2232000, 2548516, 2893848, 3376224, 3756912, 4294344
Offset: 0
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 0..1000
- Bülent Köklüce, Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables, The Ramanujan Journal 34.2 (2014): 187-208. See F_6, p. 196.
Programs
-
PARI
a(n) = polcoeff((1 + 2*x*Ser(qfrep([2, 1; 1, 12], n, 1)))^6, n); \\ Jinyuan Wang, Feb 20 2020