cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328166 Heinz number of the run-lengths of the divisors of n.

Original entry on oeis.org

2, 3, 4, 6, 4, 10, 4, 12, 8, 12, 4, 28, 4, 12, 16, 24, 4, 40, 4, 36, 16, 12, 4, 112, 8, 12, 16, 48, 4, 120, 4, 48, 16, 12, 16, 224, 4, 12, 16, 144, 4, 120, 4, 48, 64, 12, 4, 448, 8, 48, 16, 48, 4, 160, 16, 144, 16, 12, 4, 832, 4, 12, 64, 96, 16, 160, 4, 48, 16
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2019

Keywords

Comments

The Heinz number of an integer partition or multiset {y_1,...,y_k} is prime(y_1)*...*prime(y_k).

Examples

			Splitting the divisors of 30 into runs gives {{1, 2, 3}, {5, 6}, {10}, {15}, {30}}, and the Heinz number of {1, 1, 1, 2, 3} is 120, so a(30) = 120.
More examples from _Antti Karttunen_, Dec 09 2021: (Start)
Splitting the divisors of 1 into runs gives {1}, and the Heinz number of that is 2.
Splitting the divisors of 2 into runs gives {1, 2}, and the Heinz number of that is 3. [one run of length 2, therefore a(2) = prime(2)^1].
Splitting the divisors of 3 into runs gives {1} and {3}, and the Heinz number of that is 4. [two runs of length 1, therefore a(3) = prime(1)^2].
Splitting the divisors of 4 into runs gives {1, 2} and {4}, and the Heinz number of that is 6. [one run of length 1, and other run of length 2, therefore a(4) = prime(1)*prime(2)].
Splitting the divisors of 5 into runs gives {1} and {5}, and the Heinz number of that is 4. [two runs of length 1, therefore a(5) = prime(1)^2].
(End)
		

Crossrefs

The longest run of divisors of n has length A055874(n).
Numbers whose divisors > 1 have no non-singleton runs are A088725.
The number of successive pairs of divisors of n is A129308(n).
The Heinz number of the set of divisors of n is A275700(n).
Numbers whose divisors do not have weakly decreasing run-lengths are A328165.

Programs

  • Mathematica
    Table[Times@@Prime/@Length/@Split[Divisors[n],#2==#1+1&],{n,30}]
  • PARI
    A328166(n) = { my(rl=0,pd=0,v=vector(numdiv(n)),m=1); fordiv(n, d, if(d>(1+pd), v[rl]++; rl=0); pd=d; rl++); v[rl]++; for(i=1,#v, m *= prime(i)^v[i]); (m); }; \\ Antti Karttunen, Dec 09 2021

Formula

A001222(a(n)) = A137921(n).
A056239(a(n)) = A000005(n).