cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A137921 Number of divisors d of n such that d+1 is not a divisor of n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 4, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 3, 4, 5, 2, 5, 2, 5, 4, 3, 4, 6, 2, 3, 4, 6, 2, 5, 2, 5, 6, 3, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 3, 2, 7, 2, 3, 6, 6, 4, 6, 2, 5, 4, 7, 2, 8, 2, 3, 6, 5, 4, 6, 2, 8, 5, 3, 2, 8, 4, 3, 4, 7, 2, 8, 4, 5, 4, 3, 4, 9, 2, 5, 6, 7, 2, 6, 2, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2008

Keywords

Comments

a(n) = number of "divisor islands" of n. A divisor island is any set of consecutive divisors of a number where no pairs of consecutive divisors in the set are separated by 2 or more. - Leroy Quet, Feb 07 2010

Examples

			The divisors of 30 are 1,2,3,5,6,10,15,30. The divisor islands are (1,2,3), (5,6), (10), (15), (30). (Note that the differences between consecutive divisors 5-3, 10-6, 15-10 and 30-15 are all > 1.) There are 5 such islands, so a(30)=5.
		

Crossrefs

Bisections: A099774, A174199.
First appearance of n is at position A173569(n).
Numbers whose divisors have no non-singleton runs are A005408.
The longest run of divisors of n has length A055874(n).
The number of successive pairs of divisors of n is A129308(n).

Programs

  • Haskell
    a137921 n = length $ filter (> 0) $
       map ((mod n) . (+ 1)) [d | d <- [1..n], mod n d == 0]
    -- Reinhard Zumkeller, Nov 23 2011
    
  • Maple
    with(numtheory): disl := proc (b) local ct, j: ct := 1: for j to nops(b)-1 do if 2 <= b[j+1]-b[j] then ct := ct+1 else end if end do: ct end proc: seq(disl(divisors(n)), n = 1 .. 120); # Emeric Deutsch, Feb 12 2010
  • Mathematica
    f[n_] := Length@ Split[ Divisors@n, #2 - #1 == 1 &]; Array[f, 105] (* f(n) from Bobby R. Treat *) (* Robert G. Wilson v, Feb 22 2010 *)
    Table[Count[Differences[Divisors[n]],?(#>1&)]+1,{n,110}] (* _Harvey P. Dale, Jun 05 2012 *)
    a[n_] := DivisorSum[n, Boole[!Divisible[n, #+1]]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=my(d,s=0);if(n%2,numdiv(n),d=divisors(n);for(i=1,#d,if(n%(d[i]+1),s++));s)
    
  • PARI
    a(n)=sumdiv(n,d,(n%(d+1)!=0)); \\ Joerg Arndt, Jan 06 2015
    
  • Python
    from sympy import divisors
    def A137921(n):
        return len([d for d in divisors(n,generator=True) if n % (d+1)])
    # Chai Wah Wu, Jan 05 2015

Formula

a(n) <= A000005(n), with equality iff n is odd; a(A137922(n)) = 2.
a(n) = A000005(n) - A129308(n). - Michel Marcus, Jan 06 2015
a(n) = A001222(A328166(n)). - Gus Wiseman, Oct 16 2019
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 18 2024

Extensions

Corrected and edited by Charles R Greathouse IV, Apr 19 2010
Edited by N. J. A. Sloane, Aug 10 2010

A129308 a(n) is the number of positive integers k such that k*(k+1) divides n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 5, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Leroy Quet, May 26 2007

Keywords

Comments

The usual OEIS policy is not to include sequences like this where alternate terms are zero; this is an exception.
In other words, a(n) is the number of oblong numbers (A002378) dividing n. - Bernard Schott, Jul 29 2022

Examples

			The divisors of 20 are 1,2,4,5,10,20. Of these there are two that are of the form k(k+1): 2 = 1*2 and 20 = 4*5. So a(2) = 2.
		

Crossrefs

Positions of 0's and 1's are A088725, whose characteristic function is A360128.
First appearance of n is A287142(n), with sorted version A328450.
The longest run of divisors of n has length A055874(n).
One less than A195155.

Programs

  • Mathematica
    a = {}; For[n = 1, n < 90, n++, k = 1; co = 0; While[k < Sqrt[n], If[IntegerQ[ n/(k*(k + 1))], co++ ]; k++ ]; AppendTo[a, co]]; a (* Stefan Steinerberger, May 27 2007 *)
    Table[Count[Differences[Divisors[n]],1],{n,30}] (* Gus Wiseman, Oct 15 2019 *)
  • PARI
    a(n)=sumdiv(n, d, n%(d+1)==0); \\ Michel Marcus, Jan 06 2015
    
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A129308(n): return 0 if n&1 else sum(1 for a, b in pairwise(divisors(n)) if a+1==b) # Chai Wah Wu, Jun 09 2025

Formula

a(2n-1) = 0; a(2n) = A007862(n). - Ray Chandler, Jun 24 2008
G.f.: Sum_{n>=1} x^(n*(n+1))/(1-x^(n*(n+1))). - Joerg Arndt, Jan 30 2011 [modified by Ilya Gutkovskiy, Apr 14 2021]
a(n) = A000005(n) - A137921(n), where A137921(n) is the number of maximal runs of successive divisors of n. - Gus Wiseman, Oct 15 2019
a(n) = Sum_{d|n} A005369(d). - Ridouane Oudra, Jan 22 2021
a(n) = A195155(n)-1. - Antti Karttunen, Feb 21 2023
From Amiram Eldar, Dec 31 2023: (Start)
a(n) = A088722(n) + A059841(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. (End)

Extensions

More terms from Stefan Steinerberger, May 27 2007
Extended by Ray Chandler, Jun 24 2008

A245563 Table read by rows: row n gives list of lengths of runs of 1's in binary expansion of n, starting with low-order bits.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 3, 4, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 3, 2, 3, 1, 3, 1, 3, 2, 3, 4, 1, 4, 5, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2014

Keywords

Comments

A formula for A071053(n) depends on this table.

Examples

			Here are the run lengths for the numbers 0 through 21:
0, []
1, [1]
2, [1]
3, [2]
4, [1]
5, [1, 1]
6, [2]
7, [3]
8, [1]
9, [1, 1]
10, [1, 1]
11, [2, 1]
12, [2]
13, [1, 2]
14, [3]
15, [4]
16, [1]
17, [1, 1]
18, [1, 1]
19, [2, 1]
20, [1, 1]
21, [1, 1, 1]
		

Crossrefs

Row sums = A000120 (the binary weight).
Row lengths are A069010.
The version for prime indices (instead of binary indices) is A124010.
Numbers with distinct run-lengths are A328592.
Numbers with equal run-lengths are A164707.

Programs

  • Haskell
    import Data.List (group)
    a245563 n k = a245563_tabf !! n !! k
    a245563_row n = a245563_tabf !! n
    a245563_tabf = [0] : map
       (map length . (filter ((== 1) . head)) . group) (tail a030308_tabf)
    -- Reinhard Zumkeller, Aug 10 2014
    
  • Maple
    for n from 0 to 128 do
    lis:=[]; t1:=convert(n,base,2); L1:=nops(t1); out1:=1; c:=0;
    for i from 1 to L1 do
    if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
    elif out1 = 0 and t1[i] = 1 then c:=c+1;
    elif out1 = 1 and t1[i] = 0 then c:=c;
    elif out1 = 0 and t1[i] = 0 then lis:=[op(lis),c]; out1:=1; c:=0;
    fi;
    if i = L1 and c>0 then lis:=[op(lis),c]; fi;
    od:
    lprint(n,lis);
    od:
  • Mathematica
    Join@@Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2==#1+1&],{n,0,100}] (* Gus Wiseman, Nov 03 2019 *)
  • Python
    from re import split
    A245563_list = [0]
    for n in range(1,100):
        A245563_list.extend(len(d) for d in split('0+',bin(n)[:1:-1]) if d != '')
    # Chai Wah Wu, Sep 07 2014

A356226 Irregular triangle giving the lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 3, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 5, 2, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2022

Keywords

Comments

A sequence is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle  begins: {}, {1}, {1}, {2}, {1}, {2}, {1}, {3}, {2}, {1,1}, {1}, {3}, {1}, {1,1}, {2}, {4}, {1}, {3}, {1}, {2,1}, ... For example, the prime indices of 20 are {1,1,3}, which separates into maximal gapless submultisets {{1,1},{3}}, so row 20 is (2,1).
The prime indices of 18564 are {1,1,2,4,6,7}, which separates into {1,1,2}, {4}, {6,7}, so row 18564 is (3,1,2). This corresponds to the factorization 18564 = 12 * 7 * 221.
		

Crossrefs

Row sums are A001222.
Singleton row positions are A073491, complement A073492.
Length-2,3,4 row positions are A073493-A073495.
Row lengths are A287170, firsts A066205.
Row minima are A356227.
Row maxima are A356228.
Bisected run-lengths are A356229.
Standard composition numbers of rows are A356230.
Heinz numbers of rows are A356231.
Positions of first appearances are A356232.
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]

A088725 Numbers having no divisors d>1 such that also d+1 is a divisor.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2003

Keywords

Comments

Complement of A088723.
Union of A132895 and A005408, the odd numbers. - Ray Chandler, May 29 2008
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 9, 79, 778, 7782, 77813, 778055, 7780548, 77805234, 778052138, 7780519314, ... . Apparently, the asymptotic density of this sequence exists and equals 0.77805... . - Amiram Eldar, Jun 14 2022

Examples

			From _Gus Wiseman_, Oct 16 2019: (Start)
The sequence of terms together with their divisors > 1 begins:
   1: {}
   2: {2}
   3: {3}
   4: {2,4}
   5: {5}
   7: {7}
   8: {2,4,8}
   9: {3,9}
  10: {2,5,10}
  11: {11}
  13: {13}
  14: {2,7,14}
  15: {3,5,15}
  16: {2,4,8,16}
  17: {17}
  19: {19}
  21: {3,7,21}
  22: {2,11,22}
  23: {23}
  25: {5,25}
(End)
		

Crossrefs

Positions of 0's and 1's in A129308.
Positions of 0's and 1's in A328457 (also).
Numbers whose divisors (including 1) have no non-singleton runs are A005408.
The number of runs of divisors of n is A137921(n).
The longest run of divisors of n has length A055874(n).

Programs

  • Mathematica
    Select[Range[100],FreeQ[Differences[Rest[Divisors[#]]],1]&] (* Harvey P. Dale, Sep 16 2017 *)
  • PARI
    isok(n) = {my(d=setminus(divisors(n), [1])); #setintersect(d, apply(x->x+1, d)) == 0;} \\ Michel Marcus, Oct 28 2019

Formula

A088722(a(n)) = 0.

Extensions

Extended by Ray Chandler, May 29 2008

A356230 The a(n)-th composition in standard order is the sequence of lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 8, 1, 4, 1, 5, 3, 3, 1, 8, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 2, 8, 1, 3, 3, 9, 1, 5, 1, 5, 4, 3, 1, 16, 2, 6, 3, 5, 1, 8, 3, 9, 3, 3, 1, 8, 1, 3, 5, 32, 3, 5, 1, 5, 3, 6, 1, 16, 1, 3, 4, 5, 2, 5, 1, 17, 8, 3, 1, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A multiset is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}. These have lengths (3,1,2), which is the 38th composition in standard order, so a(18564) = 38.
		

Crossrefs

Numbers grouped by number of gaps in prime indices are A073491-A073495.
These are the standard composition numbers of rows of A356226.
Using Heinz numbers instead of standard compositions gives A356231.
Positions of first appearances are A356603, sorted A356232.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A066099 lists compositions in standard order.
A132747 counts non-isolated divisors, complement A132881.
A333627 represents the run-lengths of standard compositions.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Length/@Split[primeMS[n],#1>=#2-1&]],{n,100}]

Formula

A000120(a(n)) = A287170(n).
A333766(a(n)) = A356228(n).
A333768(a(n)) = A356227(n).

A356237 Heinz numbers of integer partitions with a neighborless singleton.

Original entry on oeis.org

2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2022

Keywords

Comments

A part x is neighborless if neither x - 1 nor x + 1 are parts, and a singleton if it appears only once.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also numbers that, for some prime index x, are not divisible by prime(x)^2, prime(x - 1), or prime(x + 1). Here, a prime index of n is a number m such that prime(m) divides n.

Examples

			The terms together with their prime indices begin:
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  26: {1,6}
  28: {1,1,4}
		

Crossrefs

The complement is counted by A355393.
These partitions are counted by A356235.
Not requiring a singleton gives A356734.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices of n.
A007690 counts partitions with no singletons, complement A183558.
A056239 adds up prime indices, row sums of A112798, lengths A001222.
A073491 lists numbers with gapless prime indices, complement A073492.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A356236 counts partitions with a neighborless part, complement A355394.
A356607 counts strict partitions w/ a neighborless part, complement A356606.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Function[ptn,Or@@Table[Count[ptn,x]==1&&!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]@*primeMS]

A181063 Smallest positive integer with a discrete string of exactly n consecutive divisors, or 0 if no such integer exists.

Original entry on oeis.org

1, 2, 6, 12, 3960, 60, 420, 840, 17907120, 2520, 411863760, 27720, 68502634200, 447069823200, 360360, 720720, 7600186994400, 12252240, 9524356075634400, 81909462250455840, 1149071006394511200, 232792560, 35621201198229847200, 5354228880, 91351145008363640400
Offset: 1

Views

Author

Matthew Vandermast, Oct 07 2010

Keywords

Comments

The word "discrete" is used to describe a string of consecutive divisors that is not part of a longer such string.
Does a(n) ever equal 0?
a(n) = A003418(n) iff n belongs to A181062; otherwise, a(n) > A003418(n). a(A181062(n)) = A051451(n).

Examples

			a(5) = 3960 is divisible by 8, 9, 10, 11, and 12, but not 7 or 13. It is the smallest positive integer with a string of 5 consecutive divisors that is not part of a longer string.
From _Gus Wiseman_, Oct 16 2019: (Start)
The sequence of terms together with their divisors begins:
     1: {1}
     2: {1,2}
     6: {1,2,3,6}
    12: {1,2,3,4,6,12}
  3960: {1,2,...,8,9,10,11,12,...,1980,3960}
    60: {1,2,3,4,5,6,...,30,60}
   420: {1,2,3,4,5,6,7,...,210,420}
   840: {1,2,3,4,5,6,7,8,...,420,840}
(End)
		

Crossrefs

The version taking only the longest run is A328449.
The longest run of divisors of n has length A055874(n).
Numbers whose divisors > 1 have no non-singleton runs are A088725.
The number of successive pairs of divisors of n is A129308(n).

Programs

  • Mathematica
    tav=Table[Length/@Split[Divisors[n],#2==#1+1&],{n,10000}];
    Table[Position[tav,i][[1,1]],{i,Split[Union@@tav,#2==#1+1&][[1]]}] (* Assumes there are no zeros. - Gus Wiseman, Oct 16 2019 *)

A356231 Heinz number of the sequence (A356226) of lengths of maximal gapless submultisets of the prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 5, 3, 4, 2, 5, 2, 4, 3, 7, 2, 5, 2, 6, 4, 4, 2, 7, 3, 4, 5, 6, 2, 5, 2, 11, 4, 4, 3, 7, 2, 4, 4, 10, 2, 6, 2, 6, 5, 4, 2, 11, 3, 6, 4, 6, 2, 7, 4, 10, 4, 4, 2, 7, 2, 4, 6, 13, 4, 6, 2, 6, 4, 6, 2, 11, 2, 4, 5, 6, 3, 6, 2, 14, 7, 4, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A multiset is gapless if it covers an unbroken interval of positive integers. For example, the multiset {2,3,5,5,6,9} has three maximal gapless submultisets: {2,3}, {5,5,6}, {9}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 18564 are {1,1,2,4,6,7}, with maximal gapless submultisets {1,1,2}, {4}, {6,7}. These have lengths (3,1,2), with Heinz number 30, so a(18564) = 30.
		

Crossrefs

Positions of prime terms are A073491, complement A073492.
Positions of terms with bigomega 2-4 are A073493-A073495.
Applying bigomega gives A287170, firsts A066205, even bisection A356229.
These are the Heinz numbers of the rows of A356226.
Minimal/maximal prime indices are A356227/A356228.
A version for standard compositions is A356230, firsts A356232/A356603.
A001221 counts distinct prime factors, with sum A001414.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A132747 counts non-isolated divisors, complement A132881.
A356069 counts gapless divisors, initial A356224 (complement A356225).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@Length/@Split[primeMS[n],#1>=#2-1&],{n,100}]

Formula

A001222(a(n)) = A287170(n).
A055396(a(n)) = A356227(n).
A061395(a(n)) = A356228(n).

A328457 Length of the longest run of divisors > 1 of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2019

Keywords

Crossrefs

Records occur at A328448.
Positions of 0's and 1's are A088725.
The version that looks at all divisors (including 1) is A055874.
The number of successive pairs of divisors > 1 of n is A088722(n).
The Heinz number of the multiset of run-lengths of divisors of n is A328166(n).
The longest run of nontrivial divisors of n is A328458(n).

Programs

  • Mathematica
    Table[If[n==1,0,Max@@Length/@Split[Rest[Divisors[n]],#2==#1+1&]],{n,100}]
  • PARI
    A328457(n) = { my(rl=0,pd=0,m=0); fordiv(n, d, if(d>1, if(d>(1+pd), m = max(m,rl); rl=0); pd=d; rl++)); max(m,rl); }; \\ Antti Karttunen, Feb 23 2023

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 23 2023
Showing 1-10 of 20 results. Next