1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 3, 4, 4, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 1, 3, 1, 4, 5, 5, 1, 1, 4, 1, 1, 1, 3, 1
Offset: 1
Table begins as:
Row n in Terms on
n binary that row
1 1 1;
2 10 1,1;
3 11 2;
4 100 2,1;
5 101 1,1,1;
6 110 1,2;
7 111 3;
8 1000 3,1;
9 1001 1,2,1;
10 1010 1,1,1,1;
11 1011 2,1,1;
12 1100 2,2;
13 1101 1,1,2;
14 1110 1,3;
15 1111 4;
16 10000 4,1;
etc. with the terms of row n appearing in reverse order compared how the runs of the same length appear in the binary expansion of n (Cf. A101211).
From _Omar E. Pol_, Sep 08 2013: (Start)
Illustration of initial terms:
---------------------------------------
k m Diagram Composition
---------------------------------------
. _
1 1 |_|_ 1;
2 1 |_| | 1, 1,
2 2 |_ _|_ 2;
3 1 |_ | | 2, 1,
3 2 |_|_| | 1, 1, 1,
3 3 |_| | 1, 2,
3 4 |_ _ _|_ 3;
4 1 |_ | | 3, 1,
4 2 |_|_ | | 1, 2, 1,
4 3 |_| | | | 1, 1, 1, 1,
4 4 |_ _|_| | 2, 1, 1,
4 5 |_ | | 2, 2,
4 6 |_|_| | 1, 1, 2,
4 7 |_| | 1, 3,
4 8 |_ _ _ _|_ 4;
5 1 |_ | | 4, 1,
5 2 |_|_ | | 1, 3, 1,
5 3 |_| | | | 1, 1, 2, 1,
5 4 |_ _|_ | | 2, 2, 1,
5 5 |_ | | | | 2, 1, 1, 1,
5 6 |_|_| | | | 1, 1, 1, 1, 1,
5 7 |_| | | | 1, 2, 1, 1,
5 8 |_ _ _|_| | 3, 1, 1,
5 9 |_ | | 3, 2,
5 10 |_|_ | | 1, 2, 2,
5 11 |_| | | | 1, 1, 1, 2,
5 12 |_ _|_| | 2, 1, 2,
5 13 |_ | | 2, 3,
5 14 |_|_| | 1, 1, 3,
5 15 |_| | 1, 4,
5 16 |_ _ _ _ _| 5;
.
Also irregular triangle read by rows in which row k lists the compositions of k, k >= 1.
Triangle begins:
[1];
[1,1], [2];
[2,1], [1,1,1], [1,2],[3];
[3,1], [1,2,1], [1,1,1,1], [2,1,1], [2,2], [1,1,2], [1,3], [4];
[4,1], [1,3,1], [1,1,2,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], [1,2,1,1], [3,1,1], [3,2], [1,2,2], [1,1,1,2], [2,1,2], [2,3], [1,1,3], [1,4], [5];
Row k has length A001792(k-1).
Row sums give A001787(k), k >= 1.
(End)
Comments