A384175
Number of subsets of {1..n} with all distinct lengths of maximal runs (increasing by 1).
Original entry on oeis.org
1, 2, 4, 7, 13, 24, 44, 77, 135, 236, 412, 713, 1215, 2048, 3434, 5739, 9559, 15850, 26086, 42605, 69133, 111634, 179602, 288069, 460553, 733370, 1162356, 1833371, 2878621, 4501856, 7016844, 10905449, 16904399, 26132460, 40279108, 61885621, 94766071, 144637928
Offset: 0
The subset {2,3,5,6,7,9} has maximal runs ((2,3),(5,6,7),(9)), with lengths (2,3,1), so is counted under a(9).
The a(0) = 1 through a(4) = 13 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{2,3} {1,2}
{1,2,3} {2,3}
{3,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,3,4}
For equal instead of distinct lengths we have
A243815.
These subsets are ranked by
A328592.
The complement is counted by
A384176.
For permutations instead of subsets we have
A384891, equal instead of distinct
A384892.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
Cf.
A000009,
A010027,
A044813,
A047993,
A242882,
A325325,
A329739,
A351202,
A383013,
A384889,
A384890.
-
Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
-
lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y^(n+2)),p=prod(i=1,n,1+o+x*y^(i+1)/(1-y),1/(1-y)));p=subst(serlaplace(p),x,1);Vec(p-1)} \\ Christian Sievers, Jun 18 2025
A384893
Triangle read by rows where T(n,k) is the number of subsets of {1..n} with k maximal anti-runs (increasing by more than 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 7, 5, 2, 1, 1, 12, 10, 6, 2, 1, 1, 20, 20, 13, 7, 2, 1, 1, 33, 38, 29, 16, 8, 2, 1, 1, 54, 71, 60, 39, 19, 9, 2, 1, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1
Offset: 0
The subset {3,6,7,9,11,12} has maximal anti-runs ((3,6),(7,9,11),(12)), so is counted under T(12,3).
The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), so is counted under T(12,3).
Row n = 5 counts the following subsets:
{} {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{2} {2,3} {2,3,4} {2,3,4,5}
{3} {3,4} {3,4,5}
{4} {4,5} {1,2,3,5}
{5} {1,2,4} {1,2,4,5}
{1,3} {1,2,5} {1,3,4,5}
{1,4} {1,3,4}
{1,5} {1,4,5}
{2,4} {2,3,5}
{2,5} {2,4,5}
{3,5}
{1,3,5}
Triangle begins:
1
1 1
1 2 1
1 4 2 1
1 7 5 2 1
1 12 10 6 2 1
1 20 20 13 7 2 1
1 33 38 29 16 8 2 1
1 54 71 60 39 19 9 2 1
1 88 130 122 86 50 22 10 2 1
1 143 235 241 187 116 62 25 11 2 1
1 232 420 468 392 267 150 75 28 12 2 1
1 376 744 894 806 588 363 188 89 31 13 2 1
For runs instead of anti-runs we have
A034839, for strict partitions
A116674.
For integer partitions instead of subsets we have
A268193, strict
A384905.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2!=#1+1&]]==k&]],{n,0,10},{k,0,n}]
A384177
Number of subsets of {1..n} with all distinct lengths of maximal anti-runs (increasing by more than 1).
Original entry on oeis.org
1, 2, 3, 5, 10, 19, 35, 62, 109, 197, 364, 677, 1251, 2288, 4143, 7443, 13318, 23837, 42809, 77216, 139751, 253293, 458800, 829237, 1494169, 2683316, 4804083, 8580293, 15301324, 27270061, 48607667, 86696300, 154758265, 276453311, 494050894, 882923051
Offset: 0
The subset {1,2,4,5,7,10} has maximal anti-runs ((1),(2,4),(5,7,10)), with lengths (1,2,3), so is counted under a(10).
The a(0) = 1 through a(5) = 19 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{1,3} {4} {4}
{1,3} {5}
{1,4} {1,3}
{2,4} {1,4}
{1,2,4} {1,5}
{1,3,4} {2,4}
{2,5}
{3,5}
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,5}
{2,4,5}
These subsets are ranked by
A384879.
For equal instead of distinct lengths we have
A384889, for runs
A243815.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
Cf.
A000009,
A010027,
A044813,
A047993,
A106529,
A123513,
A242882,
A325325,
A328592,
A329739,
A351202,
A384890.
-
Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
-
lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y*y^n),p=prod(i=1,(n+1)\2,1+o+x*y^(2*i-1)/(1-y)^(i-1)));p=subst(serlaplace(p),x,1);Vec((p-y)/(1-y)^2)} \\ Christian Sievers, Jun 18 2025
A384877
Irregular triangle read by rows where row k lists the lengths of maximal anti-runs (increasing by more than 1) in the binary indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 3, 3, 1, 3, 1, 2, 2, 2
Offset: 0
The binary indices of 182 are {2,3,5,6,8}, with maximal anti-runs ((2),(3,5),(6,8)) so row 182 is (1,2,2).
Triangle begins:
0: ()
1: (1)
2: (1)
3: (1,1)
4: (1)
5: (2)
6: (1,1)
7: (1,1,1)
8: (1)
9: (2)
10: (2)
11: (1,2)
12: (1,1)
13: (2,1)
14: (1,1,1)
15: (1,1,1,1)
Positions of rows of the form (1,1,...) are
A023758.
Positions of first appearances of each distinct row appear to be
A052499.
A355394 counts partitions without a neighborless part, singleton case
A355393.
A356606 counts strict partitions without a neighborless part, complement
A356607.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
Cf.
A044813,
A048793,
A069010,
A164707,
A243815,
A246029,
A328592,
A384177,
A384877,
A384879,
A384893.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Length/@Split[bpe[n],#2!=#1+1&],{n,0,100}]
A384176
Number of subsets of {1..n} without all distinct lengths of maximal runs (increasing by 1).
Original entry on oeis.org
0, 0, 0, 1, 3, 8, 20, 51, 121, 276, 612, 1335, 2881, 6144, 12950, 27029, 55977, 115222, 236058, 481683, 979443
Offset: 0
The subset {1,3,4,8,9} has maximal runs ((1),(3,4),(8,9)), with lengths (1,2,2), so is counted under a(10).
The a(0) = 0 through a(6) = 20 subsets:
. . . {1,3} {1,3} {1,3} {1,3}
{1,4} {1,4} {1,4}
{2,4} {1,5} {1,5}
{2,4} {1,6}
{2,5} {2,4}
{3,5} {2,5}
{1,3,5} {2,6}
{1,2,4,5} {3,5}
{3,6}
{4,6}
{1,3,5}
{1,3,6}
{1,4,6}
{2,4,6}
{1,2,4,5}
{1,2,4,6}
{1,2,5,6}
{1,3,4,6}
{1,3,5,6}
{2,3,5,6}
For equal instead of distinct lengths the complement is
A243815.
These subsets are ranked by the non-members of
A328592.
The complement is counted by
A384175.
A034839 counts subsets by number of maximal runs, for strict partitions
A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
-
Table[Length[Select[Subsets[Range[n]],!UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
A384905
Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k maximal anti-runs (decreasing by more than 1).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 6, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 7, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
The T(10,2) = 3 strict partitions with 2 maximal anti-runs are: (7,2,1), (5,4,1), (5,3,2).
Triangle begins:
1
0 1
0 1 0
0 1 1 0
0 2 0 0 0
0 2 1 0 0 0
0 3 0 1 0 0 0
0 3 2 0 0 0 0 0
0 4 2 0 0 0 0 0 0
0 5 2 1 0 0 0 0 0 0
0 6 3 0 1 0 0 0 0 0 0
0 7 4 1 0 0 0 0 0 0 0 0
0 9 3 3 0 0 0 0 0 0 0 0 0
This is the strict case of
A268193.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Split[#,#1!=#2+1&]]==k&]],{n,0,10},{k,0,n}]
A384878
Position of first appearance of n in the flattened version of the triangle A384877, whose m-th row lists the lengths of maximal anti-runs in the binary indices of m.
Original entry on oeis.org
1, 6, 34, 178, 882, 4210, 19570, 89202, 400498, 1776754
Offset: 1
The set of binary indices of each nonnegative integer and its partition into anti-runs begins:
0: {} {{}}
1: {1} {{1}}
2: {2} {{2}}
3: {1,2} {{1},{2}}
4: {3} {{3}}
5: {1,3} {{1,3}}
6: {2,3} {{2},{3}}
7: {1,2,3} {{1},{2},{3}}
The flattened version begins: {}, {1}, {2}, {1}, {2}, {3}, {1,3}, {2}, {3}, {1}, {2}, {3}. Of these sets, the first of length 2 is the sixth (starting with 0), so we have a(2) = 6.
For runs instead of anti-runs we have
A001792.
The unflattened version is
A052499.
A023758 lists differences of powers of 2.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
q=Join@@Table[Length/@Split[bpe[n],#2!=#1+1&],{n,0,100}];
Table[Position[q,i][[1,1]],{i,mnrm[q]}]
A200649
Number of 1's in the Stolarsky representation of n.
Original entry on oeis.org
0, 1, 2, 1, 3, 2, 2, 4, 1, 3, 3, 3, 5, 2, 2, 4, 2, 4, 4, 4, 6, 1, 3, 3, 3, 5, 3, 3, 5, 3, 5, 5, 5, 7, 2, 2, 4, 2, 4, 4, 4, 6, 2, 4, 4, 4, 6, 4, 4, 6, 4, 6, 6, 6, 8, 1, 3, 3, 3, 5, 3, 3, 5, 3, 5, 5, 5, 7, 3, 3, 5, 3, 5, 5, 5, 7, 3, 5, 5, 5, 7, 5, 5, 7, 5, 7, 7
Offset: 1
The Stolarsky representation of 19 is 11101. This has 4 1's. So a(19) = 4.
For length instead of number of 1's we have
A200648.
For 0's instead of 1's we have
A200650.
A000120 counts 1's in binary expansion.
A384877 lists anti-run lengths of binary indices, duplicates removed
A385886.
A384890 counts maximal anti-runs of binary indices, ranked by
A385816.
-
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
a[n_] := Count[stol[n], 1]; Array[a, 100] (* Amiram Eldar, Jul 07 2023 *)
-
stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}
a(n) = vecsum(stol(n)); \\ Amiram Eldar, Jul 07 2023
A200648
Length of Stolarsky representation of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 3, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 6, 4, 5, 5, 5, 6, 5, 5, 6, 5, 6, 6, 6, 7, 5, 5, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 7, 6, 7, 7, 7, 8, 5, 6, 6, 6, 7, 6, 6, 7, 6, 7, 7, 7, 8, 6, 6, 7, 6, 7, 7, 7, 8, 6, 7, 7, 7, 8, 7, 7, 8, 7, 8, 8
Offset: 1
The Stolarsky representation of 19 is 11101. This is of length 5. So a(19) = 5.
A000120 counts 1's in binary expansion.
A385886 lists maximal anti-run lengths of binary indices.
Cf.
A023758,
A048793,
A052499,
A069010,
A072649,
A083368,
A135818,
A245562,
A245563,
A348366,
A384877,
A384893.
-
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
a[n_] := If[n == 1, 1, Length[stol[n]]]; Array[a, 100] (* Amiram Eldar, Jul 07 2023 *)
-
stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}
a(n) = if(n == 1, 1, #stol(n)); \\ Amiram Eldar, Jul 07 2023
A384879
Numbers whose binary indices have all distinct lengths of maximal anti-runs (increasing by more than 1).
Original entry on oeis.org
1, 2, 4, 5, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 25, 26, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 49, 50, 52, 53, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86, 88, 97, 98, 100, 101, 104, 105, 106, 128, 129, 130
Offset: 1
The binary indices of 813 are {1,3,4,6,9,10}, with maximal anti-runs ((1,3),(4,6,9),(10)), with lengths (2,3,1), so 813 is in the sequence.
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
5: 101 ~ {1,3}
8: 1000 ~ {4}
9: 1001 ~ {1,4}
10: 1010 ~ {2,4}
11: 1011 ~ {1,2,4}
13: 1101 ~ {1,3,4}
16: 10000 ~ {5}
17: 10001 ~ {1,5}
18: 10010 ~ {2,5}
19: 10011 ~ {1,2,5}
20: 10100 ~ {3,5}
21: 10101 ~ {1,3,5}
22: 10110 ~ {2,3,5}
25: 11001 ~ {1,4,5}
26: 11010 ~ {2,4,5}
A098859 counts Wilf partitions (distinct multiplicities), complement
A336866.
A356606 counts strict partitions without a neighborless part, complement
A356607.
Cf.
A023758,
A044813,
A048793,
A164707,
A242882,
A243815,
A325325,
A328592,
A384879,
A384884,
A384886,
A384893.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],UnsameQ@@Length/@Split[bpe[#],#2!=#1+1&]&]
Showing 1-10 of 26 results.
Comments