A384893 Triangle read by rows where T(n,k) is the number of subsets of {1..n} with k maximal anti-runs (increasing by more than 1).
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 7, 5, 2, 1, 1, 12, 10, 6, 2, 1, 1, 20, 20, 13, 7, 2, 1, 1, 33, 38, 29, 16, 8, 2, 1, 1, 54, 71, 60, 39, 19, 9, 2, 1, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1
Offset: 0
Examples
The subset {3,6,7,9,11,12} has maximal anti-runs ((3,6),(7,9,11),(12)), so is counted under T(12,3). The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), so is counted under T(12,3). Row n = 5 counts the following subsets: {} {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {2} {2,3} {2,3,4} {2,3,4,5} {3} {3,4} {3,4,5} {4} {4,5} {1,2,3,5} {5} {1,2,4} {1,2,4,5} {1,3} {1,2,5} {1,3,4,5} {1,4} {1,3,4} {1,5} {1,4,5} {2,4} {2,3,5} {2,5} {2,4,5} {3,5} {1,3,5} Triangle begins: 1 1 1 1 2 1 1 4 2 1 1 7 5 2 1 1 12 10 6 2 1 1 20 20 13 7 2 1 1 33 38 29 16 8 2 1 1 54 71 60 39 19 9 2 1 1 88 130 122 86 50 22 10 2 1 1 143 235 241 187 116 62 25 11 2 1 1 232 420 468 392 267 150 75 28 12 2 1 1 376 744 894 806 588 363 188 89 31 13 2 1
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2!=#1+1&]]==k&]],{n,0,10},{k,0,n}]
Comments