A328170 Number of integer partitions of n whose parts minus 1 are relatively prime.
0, 0, 1, 1, 2, 3, 5, 8, 12, 18, 27, 38, 53, 74, 102, 137, 184, 241, 317, 413, 536, 687, 880, 1112, 1405, 1765, 2215, 2755, 3424, 4229, 5216, 6402, 7847, 9572, 11662, 14148, 17139, 20688, 24940, 29971, 35969, 43044, 51438, 61311, 72985, 86678, 102807, 121675
Offset: 0
Keywords
Examples
The a(2) = 1 through a(9) = 18 partitions: (2) (21) (22) (32) (42) (43) (62) (54) (211) (221) (222) (52) (332) (63) (2111) (321) (322) (422) (72) (2211) (421) (431) (432) (21111) (2221) (521) (522) (3211) (2222) (621) (22111) (3221) (3222) (211111) (4211) (3321) (22211) (4221) (32111) (4311) (221111) (5211) (2111111) (22221) (32211) (42111) (222111) (321111) (2211111) (21111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],GCD@@(#-1)==1&]],{n,0,30}]
-
PARI
seq(n)=Vec(sum(d=1, n-1, moebius(d)*(-1/(1-x) + 1/prod(k=0, n\d, 1 - x*x^(k*d) + O(x*x^n)))), -(n+1)) \\ Andrew Howroyd, Oct 17 2019
Formula
G.f.: Sum_{d>=1} mu(d)*(-1/(1-x) + 1/(Prod_{k>=0} 1 - x^(k*d + 1))). - Andrew Howroyd, Oct 17 2019
Comments