A328172 Number of integer partitions of n with all pairs of consecutive parts relatively prime.
1, 1, 2, 3, 4, 6, 7, 10, 12, 16, 19, 24, 28, 36, 43, 51, 62, 74, 87, 104, 122, 143, 169, 195, 227, 260, 302, 346, 397, 455, 521, 599, 686, 780, 889, 1001, 1138, 1286, 1454, 1638, 1846, 2076, 2330, 2614, 2929, 3280, 3666, 4093, 4565, 5085, 5667, 6300, 7002
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 12 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (31) (32) (51) (43) (53) (111) (211) (41) (321) (52) (71) (1111) (311) (411) (61) (431) (2111) (3111) (511) (521) (11111) (21111) (3211) (611) (111111) (4111) (5111) (31111) (32111) (211111) (41111) (1111111) (311111) (2111111) (11111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i, s) option remember; `if`(n=0 or i=1, 1, `if`(andmap(j-> igcd(i, j)=1, s), b(n-i, min(n-i, i-1), numtheory[factorset](i)), 0)+b(n, i-1, s)) end: a:= n-> b(n$2, {}): seq(a(n), n=0..60); # Alois P. Heinz, Oct 13 2019
-
Mathematica
Table[Length[Select[IntegerPartitions[n],!MatchQ[#,{_,x_,y_,_}/;GCD[x,y]>1]&]],{n,0,30}] (* Second program: *) b[n_, i_, s_] := b[n, i, s] = If[n == 0 || i == 1, 1, If[AllTrue[s, GCD[i, #] == 1&], b[n - i, Min[n - i, i - 1], FactorInteger[i][[All, 1]]], 0] + b[n, i - 1, s]]; a[n_] := b[n, n, {}]; a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Comments