A328176 a(n) is the maximal value of the expression d AND (n/d) where d runs through the divisors of n and AND denotes the bitwise AND operator.
1, 0, 1, 2, 1, 2, 1, 0, 3, 0, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 3, 2, 1, 4, 5, 0, 1, 4, 1, 4, 1, 0, 3, 0, 5, 6, 1, 2, 1, 0, 1, 6, 1, 2, 3, 2, 1, 4, 7, 0, 1, 4, 1, 2, 1, 4, 3, 0, 1, 4, 1, 2, 1, 8, 5, 2, 1, 2, 3, 4, 1, 8, 1, 0, 5, 2, 3, 4, 1, 8, 9, 0, 1, 6, 1, 2, 1
Offset: 1
Examples
For n = 12: - we have the following values: d 12/d d AND (12/d) -- ---- ------------ 1 12 0 2 6 2 3 4 0 4 3 0 6 2 2 12 1 0 - hence a(12) = max({0, 2}) = 2.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..16384
- Rémy Sigrist, Scatterplot of the first 2^16 terms
Programs
-
Maple
a:= n-> max(map(d-> Bits[And](d, n/d), numtheory[divisors](n))): seq(a(n), n=1..100); # Alois P. Heinz, Oct 09 2019
-
PARI
a(n) = vecmax(apply(d -> bitand(d, n/d), divisors(n)))