A328178 a(n) is the minimal value of the expression d XOR (n/d) where d runs through the divisors of n and XOR denotes the bitwise XOR operator.
0, 3, 2, 0, 4, 1, 6, 6, 0, 7, 10, 4, 12, 5, 6, 0, 16, 5, 18, 1, 4, 9, 22, 2, 0, 15, 10, 3, 28, 3, 30, 12, 8, 19, 2, 0, 36, 17, 14, 13, 40, 1, 42, 15, 12, 21, 46, 8, 0, 15, 18, 9, 52, 15, 14, 10, 16, 31, 58, 9, 60, 29, 14, 0, 8, 13, 66, 21, 20, 11, 70, 1, 72
Offset: 1
Examples
For n = 12: - we have the following values: d 12/d d XOR (12/d) -- ---- ------------ 1 12 13 2 6 4 3 4 7 4 3 7 6 2 4 12 1 13 - hence a(12) = min({4, 7, 13}) = 4.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..16384
- Rémy Sigrist, Logarithmic scatterplot of (n, 1+a(n)) for n = 1..2^16
Programs
-
Maple
a:= n-> min(seq(Bits[Xor](d, n/d), d=numtheory[divisors](n))): seq(a(n), n=1..100); # Alois P. Heinz, Oct 09 2019
-
Mathematica
mvx[n_]:=Min[BitXor[#,n/#]&/@Divisors[n]]; Array[mvx,80] (* Harvey P. Dale, Nov 04 2019 *)
-
PARI
a(n) = vecmin(apply(d -> bitxor(d, n/d), divisors(n)))
Formula
a(n) = 0 iff n is a square.
a(p) = p-1 for any odd prime number p.