A328188 Number of strict integer partitions of n with all pairs of consecutive parts relatively prime.
1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 12, 15, 15, 19, 23, 25, 30, 35, 39, 47, 52, 58, 65, 75, 86, 95, 109, 124, 144, 165, 181, 203, 221, 249, 285, 316, 352, 392, 438, 484, 538, 599, 666, 737, 813, 899, 992, 1102, 1215, 1335, 1472, 1621, 1776, 1946, 2137, 2336
Offset: 0
Keywords
Examples
The a(1) = 1 through a(15) = 15 partitions (A..F = 10..15): 1 2 3 4 5 6 7 8 9 A B C D E F 21 31 32 51 43 53 54 73 65 75 76 95 87 41 321 52 71 72 91 74 B1 85 B3 B4 61 431 81 532 83 543 94 D1 D2 521 432 541 92 651 A3 653 E1 531 721 A1 732 B2 743 654 4321 731 741 C1 752 753 5321 831 652 761 852 921 751 851 951 832 941 A32 5431 A31 B31 7321 B21 6531 5432 7431 6521 7521 8321 54321
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i, s) option remember; `if`(i*(i+1)/2
igcd(i, j)=1, s), b(n-i, min(n-i, i-1), numtheory[factorset](i)), 0)+b(n, i-1, s))) end: a:= n-> b(n$2, {}): seq(a(n), n=0..60); # Alois P. Heinz, Oct 13 2019 -
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{_,x_,y_,_}/;GCD[x,y]>1]&]],{n,0,30}] (* Second program: *) b[n_, i_, s_] := b[n, i, s] = If[i(i + 1)/2 < n, 0, If[n == 0, 1, If[AllTrue[s, GCD[i, #] == 1&], b[n - i, Min[n - i, i - 1], FactorInteger[i][[All, 1]]], 0] + b[n, i - 1, s]]]; a[n_] := b[n, n, {}]; a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)