cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328219 LCM of the prime indices of n, all plus 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 5, 2, 3, 4, 6, 6, 7, 10, 12, 2, 8, 6, 9, 4, 15, 6, 10, 6, 4, 14, 3, 10, 11, 12, 12, 2, 6, 8, 20, 6, 13, 18, 21, 4, 14, 30, 15, 6, 12, 10, 16, 6, 5, 4, 24, 14, 17, 6, 12, 10, 9, 22, 18, 12, 19, 12, 15, 2, 28, 6, 20, 8, 30, 20, 21, 6, 22, 26
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Sorted positions of first appearances are A328451.
LCM of prime indices is A290103.
LCM of prime indices minus 1 is A328456.
GCD of prime indices plus 1 is A328169.
Partitions whose parts plus 1 are relatively prime are A318980.
Numbers whose prime indices plus 1 are relatively prime are A318981,

Programs

  • Mathematica
    Table[If[n==1,1,LCM@@(PrimePi/@First/@FactorInteger[n]+1)],{n,100}]
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A328219(n) = A290103(A003961(n)); \\ Antti Karttunen, Oct 18 2019

Formula

a(n) = A290103(A003961(n)).
If n = A000040(i_1) * ... * A000040(i_k), then a(n) = lcm(1+i_1,...,1+i_k).