A328243 Numbers whose arithmetic derivative (A003415) is larger than 1 and one of the terms of A143293 (partial sums of primorials).
14, 45, 74, 198, 5114, 10295, 65174, 1086194, 20485574, 40354813, 465779078, 12101385979, 15237604243, 18046312939, 29501083259, 52467636437, 65794608773, 86725630997, 87741700037, 131833085077, 168380217557, 176203950283, 177332276971, 226152989747, 292546582253
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..39 (terms < 10^13)
Crossrefs
Programs
-
PARI
A002620(n) = ((n^2)>>2); A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A143293(n) = if(n==0, 1, my(P=1, s=1); forprime(p=2, prime(n), s+=P*=p); (s)); \\ From A143293. A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; isA328243(n) = { my(u=A003415(n)); ((u>1)&&(1==A276150(A276086(u)))); }; \\ This is very slow program! k=0; for(n=1,A002620(A143293(6)),if(isA328243(n), k++; print1(n,", ")));
Formula
A327969(a(n)) <= 5 for all n.
Extensions
a(12)-a(25) from David A. Corneth and Giovanni Resta, Oct 12 2019
Comments