cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328253 Nonsquarefree numbers whose first arithmetic derivative (A003415) is not squarefree, but the second derivative (A068346) is.

Original entry on oeis.org

50, 99, 125, 207, 343, 375, 531, 686, 725, 747, 750, 819, 875, 931, 1083, 1175, 1331, 1375, 1750, 1775, 1899, 2057, 2058, 2075, 2197, 2250, 2299, 2331, 2367, 2499, 2525, 2625, 2750, 2853, 3250, 3425, 3430, 3577, 3610, 3771, 3789, 3843, 3875, 4059, 4149, 4250, 4311, 4394, 4459, 4475, 4626, 4693, 4750, 4775, 4875, 4913, 4998, 5145
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2019

Keywords

Examples

			50 (= 2 * 5^2) is not squarefree, and its first derivative A003415(50) = 45 = 3^2 * 5 also is not squarefree, but taking derivative yet again, gives A003415(45) = 39 = 3*13, which is squarefree, thus 50 is included in this sequence.
		

Crossrefs

Row 4 of array A328250. Indices of 3's in A328248.
Setwise difference A328245 \ A005117. Intersection of A013929 and A328245.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA328253(n) = if(issquarefree(n), 0, my(u=A003415(n)); if(issquarefree(u),0, issquarefree(A003415(u))));
    
  • PARI
    A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));
    A328248(n) = { my(k=1); while(n && !issquarefree(n), k++; n = A003415checked(n)); (!!n*k); };
    isA328253(n) = (3==A328248(n));