A328275 Numbers m such that phi(m) = rad(m)^4, where phi is the Euler totient function (A000010) and rad is the squarefree kernel function (A007947).
1, 32, 3888, 25000, 2839714, 3037500, 10890936, 120298932, 402627500, 534837384, 7489147356, 8508543750, 48919241250, 111945866022, 336977358354, 417841706250, 553904623764, 1498168652148, 2627525125250, 2761526809032, 2898701538750, 7978057537338, 16548448068126, 20978349935382
Offset: 1
Examples
32 is in the sequence since phi(32) = 16, rad(32) = 2 and 16 = 2^4.
Links
- Jean-Marie De Koninck, Florian Luca and A. Sankaranarayanan, Positive integers whose Euler function is a power of their kernel function, Rocky Mountain Journal of Mathematics, Vol. 36, No. 1 (2006), pp. 81-96, alternative link.
Programs
-
Mathematica
rad[n_] := Times @@ First /@ FactorInteger[n]; aQ[n_] := EulerPhi[n] == rad[n]^4; Select[Range[3*10^6], aQ]
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 isok(m) = eulerphi(m) == rad(m)^4; \\ Michel Marcus, Oct 15 2019
Extensions
a(6) = 3037500 from Marius A. Burtea, Oct 11 2019
Comments