A328284 An extension of the Jacobsthal numbers: 0, 0, 1, followed by A001045.
0, 0, 1, 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485
Offset: 0
Keywords
Links
- OEIS Wiki, Autosequence
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Crossrefs
Programs
-
Mathematica
a[n_] := If[n>3, (2^(n-3) + (-1)^n)/3, If[n == 2, 1, 0]]; (* Jean-François Alcover, Oct 16 2019 *)
Formula
a(n) is the fourth row of the following array:
0, 0, 0, 0, 0, 1, 3, 7, 14, 27, 51, 97, ...
0, 0, 0, 0, 1, 2, 4, 7, 13, 24, 46, 89, ... = A086445
0, 0, 0, 1, 1, 2, 3, 6, 11, 22, 43, 86, ... = 0, 0, 0, A005578(n)
0, 0, 1, 0, 1, 1, 3, 5, 11, 21, 43, 85, ... = a(n)
0, 1, -1, 1, 0, 2, 2, 6, 10, 22, 42, 86, ...
1, -2, 2, -1, 2, 0, 4, 4, 12, 20, 44, 84, ...
From the main diagonal onward, every row is an autosequence of the first kind.
From Stefano Spezia, Oct 16 2019: (Start)
O.g.f.: x^2*(-1 + x + x^2)/(-1 + x + 2*x^2).
E.g.f.: (1/24)*exp(-x)*(8 - 9*exp(x) + exp(3*x) + 6*exp(x)*x + 6*exp(x)*x^2).
a(n) = a(n-1) + 2*a(n-2) for n > 4. (End)
a(n) = Sum_{k=0..n-1} A183190(n-k-2, n-2*k-2). - Jean-François Alcover, Nov 10 2019
Extensions
Partially edited by Peter Luschny, Nov 12 2019