A328347 Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (0,k,n-k) and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 3, 4, 3, 7, 15, 15, 7, 19, 52, 72, 52, 19, 51, 175, 300, 300, 175, 51, 141, 576, 1185, 1480, 1185, 576, 141, 393, 1869, 4473, 6685, 6685, 4473, 1869, 393, 1107, 6000, 16380, 28392, 33880, 28392, 16380, 6000, 1107, 3139, 19107, 58572, 115332, 159264, 159264, 115332, 58572, 19107, 3139
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 3, 4, 3; 7, 15, 15, 7; 19, 52, 72, 52, 19; 51, 175, 300, 300, 175, 51; 141, 576, 1185, 1480, 1185, 576, 141; 393, 1869, 4473, 6685, 6685, 4473, 1869, 393; 1107, 6000, 16380, 28392, 33880, 28392, 16380, 6000, 1107; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Wikipedia, Lattice path
- Wikipedia, Self-avoiding walk
Crossrefs
Programs
-
Maple
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(add( add(`if`(i+j+k=1, (h-> `if`(add(t, t=h)<0, 0, b(h)))( sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1])) end: T:= (n, k)-> b(sort([0, k, n-k])): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[l_List] := b[l] = If[l[[-1]] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[Total[h] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]]; T[n_, k_] := b[Sort[{0, k, n - k}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
Formula
T(n,k) = T(n,n-k).
Comments