cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328347 Number T(n,k) of n-step walks on cubic lattice starting at (0,0,0), ending at (0,k,n-k) and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 4, 3, 7, 15, 15, 7, 19, 52, 72, 52, 19, 51, 175, 300, 300, 175, 51, 141, 576, 1185, 1480, 1185, 576, 141, 393, 1869, 4473, 6685, 6685, 4473, 1869, 393, 1107, 6000, 16380, 28392, 33880, 28392, 16380, 6000, 1107, 3139, 19107, 58572, 115332, 159264, 159264, 115332, 58572, 19107, 3139
Offset: 0

Views

Author

Alois P. Heinz, Oct 13 2019

Keywords

Comments

These walks are not restricted to the first (nonnegative) octant.

Examples

			Triangle T(n,k) begins:
     1;
     1,    1;
     3,    4,     3;
     7,   15,    15,     7;
    19,   52,    72,    52,    19;
    51,  175,   300,   300,   175,    51;
   141,  576,  1185,  1480,  1185,   576,   141;
   393, 1869,  4473,  6685,  6685,  4473,  1869,  393;
  1107, 6000, 16380, 28392, 33880, 28392, 16380, 6000, 1107;
  ...
		

Crossrefs

Columns k=0-1 give: A002426, A132894 = n*A005773(n).
Row sums give A084609.
T(2n,n) gives A328426.

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(add(
          add(`if`(i+j+k=1, (h-> `if`(add(t, t=h)<0, 0, b(h)))(
          sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
        end:
    T:= (n, k)-> b(sort([0, k, n-k])):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[l_List] := b[l] = If[l[[-1]] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[Total[h] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
    T[n_, k_] := b[Sort[{0, k, n - k}]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

T(n,k) = T(n,n-k).