A328358 Number of inversion sequences of length n avoiding the consecutive patterns 012, 021, 010, 120.
1, 1, 2, 4, 10, 30, 100, 376, 1566, 7094, 34751, 182841, 1026167, 6112799, 38489481, 255204077, 1776046697, 12936265145, 98368170749, 779127467795, 6414876317675, 54802126603135, 484967246285755, 4438877330941077, 41963817964950737, 409224941931240185
Offset: 0
Keywords
Examples
The length 4 inversion sequences avoiding the consecutive patterns 012, 021, 010, 120 are 0000, 0110, 0001, 0011, 0111, 0002, 0112, 0022, 0003, 0113.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..578
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Crossrefs
Programs
-
Maple
b:= proc(n, x, t, c) option remember; `if`(n=0, 1, add(`if`(i
x, max(0, c-1))), i=1..n)) end: a:= n-> b(n, 0, false, 2): seq(a(n), n=0..25); # Alois P. Heinz, Oct 14 2019 -
Mathematica
b[n_, x_, t_, c_] := b[n, x, t, c] = If[n == 0, 1, Sum[If[i < x && t && c == 0, 0, b[n - 1, i, i != x, Max[0, c - 1]]], {i, 1, n}]]; a[n_] := b[n, 0, False, 2]; a /@ Range[0, 25] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)
Extensions
a(11)-a(25) from Alois P. Heinz, Oct 14 2019
Comments