A328377 a(n) is the number of "generalized signotopes", i.e., mappings X:{{1..n} choose 3}->{+,-} such that for any four indices a < b < c < d, the sequence X(a,b,c), X(a,b,d), X(a,c,d), X(b,c,d) changes its sign at most twice (equivalently +-+- and -+-+ are forbidden).
2, 14, 544, 173128, 630988832, 35355434970848
Offset: 3
References
- D. Knuth, Axioms and Hulls, Springer, 1992, 9-11.
Links
- M. Balko, R. Fulek, and J. Kynčl, Crossing Numbers and Combinatorial Characterization of Monotone Drawings of K_n, Discrete & Computational Geometry, Volume 53, Issue 1, 2015, Pages 107-143.
- H. Bergold, S. Felsner, M. Scheucher, F. Schröder, and R. Steiner, Topological Drawings meet Classical Theorems from Convex Geometry, Discrete & Computational Geometry, Springer, 2022.
- S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
- Manfred Scheucher, C-program for computing the first terms
Extensions
a(8) from Robert Lauff and Manfred Scheucher, Nov 04 2022
Comments