A328383 a(n) gives the number of iterations of x -> A003415(x) needed to reach the first number which is either a divisor or multiple of n, but not both at the same time. If no such number can ever be reached, a(n) is 0 (when either n is of the form p^p, or if the iteration would never stop). When the number reached is a divisor of n, a(n) is -1 * iteration count.
-1, -1, 0, -1, -2, -1, 2, -3, -2, -1, 9, -1, -4, 23, 1, -1, -4, -1, 5, -2, -2, -1, 2, -3, 24, 0, 18, -1, -2, -1, 6, -5, -2, 85, 7, -1, -4, 21, 10, -1, -2, -1, 35, 53, -4, -1, 2, -5, 44, 18, 34, -1, 2, 21, 4, -3, -2, -1, 16, -1, -6, 21, 1, -5, -2, -1, 7, 85, -2, -1, 4, -1, 23, 55, 5, -4, -2, -1, 4, 9, -2, -1, 42, -3, 42
Offset: 2
Examples
For n = 6, its arithmetic derivative A003415(6) = 5 is neither its divisor nor its multiple, but the second arithmetic derivative A003415(5) = 1 is its divisor, thus a(6) = -2. For n = 8, its arithmetic derivative A003415(8) = 12 is neither its divisor nor its multiple, but the second arithmetic derivative A003415(12) = 16 is its multiple, thus a(8) = +2. Numbers reached for n=2..28 (with positions of the form p^p are filled with the same p^p): 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 8592, 1, 1, 410267320320, 32, 1, 1, 1, 240, 7, 1, 1, 48, 1, 410267320320, 27, 9541095424. For example, we have a(12) = 9 and the 9th arithmetic derivative of 12 is A003415^(9)(12) = 8592 = 716*12.
Links
- Antti Karttunen, Table of n, a(n) for n = 2..90
Comments