A328400 Smallest number with the same set of distinct prime exponents as n.
1, 2, 2, 4, 2, 2, 2, 8, 4, 2, 2, 12, 2, 2, 2, 16, 2, 12, 2, 12, 2, 2, 2, 24, 4, 2, 8, 12, 2, 2, 2, 32, 2, 2, 2, 4, 2, 2, 2, 24, 2, 2, 2, 12, 12, 2, 2, 48, 4, 12, 2, 12, 2, 24, 2, 24, 2, 2, 2, 12, 2, 2, 12, 64, 2, 2, 2, 12, 2, 2, 2, 72, 2, 2, 12, 12, 2, 2, 2, 48, 16, 2, 2, 12, 2, 2, 2, 24, 2, 12, 2, 12, 2, 2, 2, 96, 2, 12, 12, 4, 2, 2, 2, 24, 2
Offset: 1
Keywords
Examples
90 = 2^1 * 3^2 * 5^1 has prime signature (1,1,2). The smallest number with prime signature (1,2) is 12 = 2^2 * 3, thus a(90) = 12.
Links
Crossrefs
Programs
-
Mathematica
Array[Times @@ MapIndexed[Prime[#2[[1]]]^#1 &, Reverse[Flatten[Cases[FactorInteger[#], {p_, k_} :> Table[PrimePi[p], {k}]]]]] &[Times @@ FactorInteger[#][[All, 1]]] &@ If[# == 1, 1, Times @@ Prime@ FactorInteger[#][[All, -1]]] &, 105] (* Michael De Vlieger, Oct 17 2019, after Gus Wiseman at A181821 *)
-
PARI
A007947(n) = factorback(factorint(n)[, 1]); A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); }; A328400(n) = A181821(A007947(A181819(n)));
Comments