cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328400 Smallest number with the same set of distinct prime exponents as n.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 8, 4, 2, 2, 12, 2, 2, 2, 16, 2, 12, 2, 12, 2, 2, 2, 24, 4, 2, 8, 12, 2, 2, 2, 32, 2, 2, 2, 4, 2, 2, 2, 24, 2, 2, 2, 12, 12, 2, 2, 48, 4, 12, 2, 12, 2, 24, 2, 24, 2, 2, 2, 12, 2, 2, 12, 64, 2, 2, 2, 12, 2, 2, 2, 72, 2, 2, 12, 12, 2, 2, 2, 48, 16, 2, 2, 12, 2, 2, 2, 24, 2, 12, 2, 12, 2, 2, 2, 96, 2, 12, 12, 4, 2, 2, 2, 24, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

A variant of A046523 which gives the smallest number with the same prime signature as n. However, in this sequence, if any prime exponent occurs multiple times in n, the extra occurrences are removed and the signature is that of one of the numbers where only distinct values of prime exponents occur (A130091).

Examples

			90 = 2^1 * 3^2 * 5^1 has prime signature (1,1,2). The smallest number with prime signature (1,2) is 12 = 2^2 * 3, thus a(90) = 12.
		

Crossrefs

Cf. A007947, A046523, A181819, A181821, A328401 (rgs-transform).
Cf. A005117 (gives indices of terms <= 2), A062503 (after its initial 1, gives indices of 4's in this sequence).

Programs

  • Mathematica
    Array[Times @@ MapIndexed[Prime[#2[[1]]]^#1 &, Reverse[Flatten[Cases[FactorInteger[#], {p_, k_} :> Table[PrimePi[p], {k}]]]]] &[Times @@ FactorInteger[#][[All, 1]]] &@ If[# == 1, 1, Times @@ Prime@ FactorInteger[#][[All, -1]]] &, 105] (* Michael De Vlieger, Oct 17 2019, after Gus Wiseman at A181821 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); };
    A328400(n) = A181821(A007947(A181819(n)));

Formula

a(n) = A181821(A007947(A181819(n))).
For all n, a(n) = a(A046523(n)).