cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A328397 Lexicographically earliest infinite sequence such that a(i) = a(j) => A328400(A276087(i)) = A328400(A276087(j)) for all i, j.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 3, 3, 1, 3, 2, 4, 5, 3, 6, 3, 3, 7, 3, 8, 9, 8, 10, 11, 12, 13, 14, 15, 16, 1, 3, 5, 3, 3, 4, 3, 3, 17, 1, 17, 2, 18, 19, 17, 6, 20, 4, 7, 21, 17, 22, 23, 24, 25, 26, 27, 28, 23, 21, 5, 5, 4, 7, 17, 7, 3, 3, 17, 29, 30, 31, 18, 19, 32, 22, 33, 24, 34, 35, 36, 37, 38, 39, 15, 40, 41, 14, 42, 43, 7, 19, 44, 45, 19, 46, 21, 8, 17, 47, 48, 4, 49
Offset: 0

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

Restricted growth sequence transform of function f(n) = A328400(A276087(n)).
For all i, j:
A328395(i) = A328395(j) => a(i) = a(j) => A328389(i) = A328389(j).

Crossrefs

Programs

  • PARI
    up_to = 32589;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]);
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); };
    A328400(n) = A181821(A007947(A181819(n)));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A276087(n) = A276086(A276086(n));
    v328397 = rgs_transform(vector(1+up_to, n, A328400(A276087(n-1))));
    A328397(n) = v328397[1+n];

A328401 Lexicographically earliest infinite sequence such that a(i) = a(j) => A328400(i) = A328400(j) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 5, 2, 2, 2, 6, 2, 5, 2, 5, 2, 2, 2, 7, 3, 2, 4, 5, 2, 2, 2, 8, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 5, 5, 2, 2, 9, 3, 5, 2, 5, 2, 7, 2, 7, 2, 2, 2, 5, 2, 2, 5, 10, 2, 2, 2, 5, 2, 2, 2, 11, 2, 2, 5, 5, 2, 2, 2, 9, 6, 2, 2, 5, 2, 2, 2, 7, 2, 5, 2, 5, 2, 2, 2, 12, 2, 5, 5, 3, 2, 2, 2, 7, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 17 2019

Keywords

Comments

Restricted growth sequence transform of A328400(n), or equally, of A007947(A181819(n)).
For all i, j:
A101296(i) = A101296(j) => a(i) = a(j),
a(i) = a(j) => A051903(i) = A051903(j) => A008966(i) = A008966(j),
a(i) = a(j) => A051904(i) = A051904(j),
a(i) = a(j) => A052409(i) = A052409(j),
a(i) = a(j) => A072411(i) = A072411(j),
a(i) = a(j) => A071625(i) = A071625(j),
a(i) = a(j) => A267115(i) = A267115(j),
a(i) = a(j) => A267116(i) = A267116(j).

Examples

			Numbers 2 (= 2^1), 3 (= 3^1), 6 = (2^1 * 3^1) and 30 (2^1 * 3^1 * 5^1) all have just one distinct exponent, 1, in the multisets of exponents that occur in their prime factorization, thus they all have the same value a(2) = a(3) = a(6) = a(30) = 2 in this sequence.
Number 4 (2^2), 9 (3^2) and 36 (2^2 * 3^2) all have just one distinct exponent, 2, in the multisets of exponents that occur in their prime factorization, thus they all have the same value a(4) = a(9) = a(36) = 3 in this sequence.
Numbers 12 = 2^2 * 3^1, 18 = 2^1 * 3^2, 60 = 2^2 * 3^1 * 5^1 and 300 = 2^2 * 3^1 * 5^2 all have both 1 and 2 and none other values occurring in the multisets of exponents in their prime factorization, thus they all have the value of a(12) = 5 that was allotted to 12 by the restricted growth sequence transform, as 12 is the smallest number with prime signature (1, 2).
		

Crossrefs

Cf. A005117 (gives indices of terms <= 2), A062503 (after its initial 1, gives indices of 3's).

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]);
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    v328401 = rgs_transform(vector(up_to, n, A007947(A181819(n)))); \\ Faster than with A328400(n).
    A328401(n) = v328401[n];

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A329600 Smallest number with the same set of distinct prime exponents as A108951(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 8, 4, 12, 2, 24, 2, 12, 12, 16, 2, 72, 2, 24, 12, 12, 2, 48, 4, 12, 8, 24, 2, 360, 2, 32, 12, 12, 12, 144, 2, 12, 12, 48, 2, 360, 2, 24, 24, 12, 2, 96, 4, 72, 12, 24, 2, 432, 12, 48, 12, 12, 2, 720, 2, 12, 24, 64, 12, 360, 2, 24, 12, 360, 2, 288, 2, 12, 72, 24, 12, 360, 2, 96, 16, 12, 2, 720, 12, 12, 12, 48, 2, 2160, 12, 24, 12, 12, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2019

Keywords

Crossrefs

Cf. A077462 (rgs-transform, from its term a(1)=1 onward).

Programs

  • Mathematica
    Array[Times @@ MapIndexed[Prime[#2[[1]]]^#1 &, Reverse[Flatten[Cases[FactorInteger[#], {p_, k_} :> Table[PrimePi[p], {k}]]]]] &[Times @@ FactorInteger[#][[All, 1]]] &@ If[# == 1, 1, Times @@ Prime@ FactorInteger[#][[All, -1]]] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}]] &, 105] (* Michael De Vlieger, Nov 18 2019, after Gus Wiseman at A181821 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); };
    A328400(n) = A181821(A007947(A181819(n)));
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329600(n) = A328400(A108951(n));

Formula

A297404 A binary representation of the positive exponents that appear in the prime factorization of a number, shown in decimal.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 3, 1, 1, 1, 8, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 4, 3, 1, 1, 1, 16, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 32, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 3, 3, 1, 1, 1, 9, 8, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Rémy Sigrist, Dec 29 2017

Keywords

Comments

This sequence is similar to A087207; here we encode the exponents, there the prime numbers appearing in the prime factorization of a number.
The binary representation of a(n) shows which exponents appear in the prime factorization of n, but without multiplicities:
- for any prime number p and k > 0, if p^k divides n but p^(k+1) does not divide n, then a(n) AND 2^(k-1) = 2^(k-1) (where AND denotes the bitwise AND operator),
- conversely, if a(n) AND 2^(k-1) = 2^(k-1) for some k > 0, then there is prime number p such that p^k divides n but p^(k+1) does not divide n.

Examples

			For n = 90:
- 90 = 5^1 * 3^2 * 2^1,
- the exponents appearing in the prime factorization of 90 are 1 and 2,
- hence a(90) = 2^(1-1) + 2^(2-1) = 3.
		

Crossrefs

Programs

  • Mathematica
    Array[Total@ Map[2^(# - 1) &, Union[FactorInteger[#][[All, -1]] ]] - Boole[# == 1] &, 86] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    a(n) = my (x=Set(factor(n)[,2]~)); sum(i=1, #x, 2^(x[i]))/2

Formula

a(p^k) = 2^(k-1) for any prime number p and k > 0.
a(n^2) = A000695(2 * a(n)) / 2 for any n > 0.
a(n) <= 1 iff n is squarefree (A005117).
a(n) <= 3 iff n is cubefree (A004709).
a(n) is odd iff n belongs to A052485 (weak numbers).
a(n) is even iff n belongs to A001694 (powerful numbers).
a(n) AND 2 = 2 iff n belongs to A038109 (where AND denotes the bitwise AND operator).
A000120(a(n)) <= 1 iff n belongs to A072774 (powers of squarefree numbers).
A000120(a(n)) > 1 iff n belongs to A059404.
If gcd(m, n) = 1, then a(m * n) = a(m) OR a(n) (where OR denotes the bitwise OR operator).
a(n) = a(A328400(n)). - Peter Munn, Oct 02 2023

A328569 Exponent of least prime factor in A276086(A276086(n)), where A276086 converts the primorial base expansion of n into its prime product form.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 4, 1, 5, 1, 1, 1, 6, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 2, 1, 3, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 7, 1, 10, 1, 1, 1, 2, 1, 6, 1, 2, 1, 10, 1, 8, 1, 1, 1, 6, 1, 7, 1, 1, 1, 3, 1, 4, 1, 2, 1, 5, 1, 4, 1, 1, 1, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Comments

Equally, the least significant nonzero digit in primorial base expansion of A276086(n).

Crossrefs

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); };
    A328569(n) = A276088(A276086(n));

Formula

a(n) = A276088(A276086(n)) = A067029(A276087(n)).
max(a(n),1+A051903(A328400(A003557(A276086(A328476(n)))))) = A328389(n). [A328400 is optional in the formula]
For all even n, a(n) < A328579(n).

A329601 The squarefree kernel of Product prime(e(i)), when n = Product prime(i)^e(i).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 5, 3, 2, 2, 6, 2, 2, 2, 7, 2, 6, 2, 6, 2, 2, 2, 10, 3, 2, 5, 6, 2, 2, 2, 11, 2, 2, 2, 3, 2, 2, 2, 10, 2, 2, 2, 6, 6, 2, 2, 14, 3, 6, 2, 6, 2, 10, 2, 10, 2, 2, 2, 6, 2, 2, 6, 13, 2, 2, 2, 6, 2, 2, 2, 15, 2, 2, 6, 6, 2, 2, 2, 14, 7, 2, 2, 6, 2, 2, 2, 10, 2, 6, 2, 6, 2, 2, 2, 22, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A007947(A181819(n)).
a(n) = A181819(A328400(n)), A181821(a(n)) = A328400(n).
a(A108951(n)) = A329607(n).
a(n) = A019565(A297404(n)). - Peter Munn, Oct 02 2023
Showing 1-8 of 8 results.