cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A328407 G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + x) / (1 - x)^3.

Original entry on oeis.org

1, 5, 9, 21, 25, 45, 49, 85, 81, 125, 121, 189, 169, 245, 225, 341, 289, 405, 361, 525, 441, 605, 529, 765, 625, 845, 729, 1029, 841, 1125, 961, 1365, 1089, 1445, 1225, 1701, 1369, 1805, 1521, 2125, 1681, 2205, 1849, 2541, 2025, 2645, 2209, 3069, 2401, 3125, 2601, 3549, 2809, 3645, 3025
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2019

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else IsOdd(n) select n^2 else Self(n div 2)+n^2 :n in [1..55]]; // Marius A. Burtea, Oct 15 2019
  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[x^(2^k) (1 + x^(2^k))/(1 - x^(2^k))^3, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := If[EvenQ[n], a[n/2] + n^2, n^2]; Table[a[n], {n, 1, 55}]
    Table[DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] #^2 &], {n, 1, 55}]
    f[p_, e_] := If[p == 2, (4^(e + 1) - 1)/3, p^(2*e)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)

Formula

G.f.: Sum_{k>=0} x^(2^k) * (1 + x^(2^k)) / (1 - x^(2^k))^3.
G.f.: (1/3) * Sum_{k>=1} J_2(2*k) * x^k / (1 - x^k), where J_2() is the Jordan function (A007434).
Dirichlet g.f.: zeta(s-2) / (1 - 2^(-s)).
a(2*n) = a(n) + 4*n^2, a(2*n+1) = (2*n + 1)^2.
a(n) = Sum_{d|n} A209229(n/d) * d^2.
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A023871.
Sum_{k=1..n} a(k) ~ 8*n^3/21. - Vaclav Kotesovec, Oct 15 2019
Multiplicative with a(2^e) = (4^(e+1)-1)/3, and a(p^e) = p^(2*e) for an odd prime p. - Amiram Eldar, Oct 25 2020
Showing 1-1 of 1 results.