A328430 Number of inversion sequences of length n avoiding the consecutive patterns 001 and 012.
1, 1, 2, 3, 7, 18, 70, 317, 1825, 11805, 88212, 727731, 6660103, 66377942, 718681969, 8376682083, 104703957902, 1395883946839, 19777652272297, 296686846198829, 4697959440255354, 78299282813403618, 1370127872827224359, 25114095425698971152, 481202765468970358153
Offset: 0
Keywords
Examples
The a(4)=7 length 4 inversion sequences avoiding the consecutive patterns 001 and 012 are 0000, 0100, 0110, 0101, 0111, 0102, and 0103.
Links
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Crossrefs
Programs
-
Maple
# after Alois P. Heinz in A328357 b := proc(n, x, t) option remember; `if`(n = 0, 1, add( `if`(t and i <= x, 0, b(n - 1, i, i < x)), i = 0 .. n - 1)) end proc: a := n -> b(n, -1, false): seq(a(n), n = 0 .. 24);
-
Mathematica
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]]; a[n_] := b[n, -1, False]; a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
Comments