A328432 Number of inversion sequences of length n avoiding the consecutive patterns 010, 021, and 120.
1, 1, 2, 5, 15, 53, 216, 994, 5076, 28403, 172538, 1129511, 7919314, 59150556, 468504022, 3919569708, 34518111783, 319030219223, 3086250047021, 31174921402976, 328110078110137, 3591110146030066, 40800503952916639, 480429785491094856, 5854374278697301978
Offset: 0
Keywords
Examples
The a(4)=15 length 4 inversion sequences avoiding the consecutive patterns 010, 021, 120 and are 0000, 0110, 0001, 0011, 0111, 0002, 0012, 0112, 0022, 0122, 0003, 0013, 0113, 0023, and 0123.
Links
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Crossrefs
Programs
-
Maple
# after Alois P. Heinz in A328357 b := proc(n, x, t) option remember; `if`(n = 0, 1, add( `if`(t and i < x, 0, b(n - 1, i, i > x)), i = 0 .. n - 1)) end proc: a := n -> b(n, n, false): seq(a(n), n = 0 .. 24);
-
Mathematica
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i < x, 0, b[n - 1, i, i > x]], {i, 0, n - 1}]]; a[n_] := b[n, n, False]; a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
Comments