A328434 Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, 201, and 210.
1, 1, 2, 6, 21, 81, 346, 1630, 8350, 45958, 269815, 1681285, 11071336, 76743040, 558062437, 4244853573, 33687390663, 278296576327, 2388351295760, 21254019548162, 195801111412320, 1864508416302520, 18326903140310011, 185711672802101781, 1937795878138303715
Offset: 0
Keywords
Examples
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, 201, and 210 are 0101, 0102 and 0103.
Links
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Crossrefs
Programs
-
Maple
# after Alois P. Heinz in A328357 b := proc(n, x, t) option remember; `if`(n=0, 1, add( `if`(t and i>x, 0, b(n-1, i, i<>x and x>-1)), i=0..n-1)) end proc: a := n -> b(n, -1, false): seq(a(n), n = 0 .. 24);
-
Mathematica
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i > x, 0, b[n - 1, i, i != x && x > -1]], {i, 0, n - 1}]]; a[n_] := b[n, -1, False]; a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
Comments