A328435 Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, and 201.
1, 1, 2, 6, 21, 83, 368, 1814, 9837, 58095, 370499, 2534374, 18493023, 143280489, 1173971656, 10136279104, 91936857611, 873547634921, 8673546319685, 89796095349193, 967384904147690, 10825116242427973, 125613702370667158, 1509222589338456874, 18748890945849736182
Offset: 0
Keywords
Examples
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, and 201 are 0101, 0102, and 0103.
Links
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Crossrefs
Programs
-
Maple
# after Alois P. Heinz in A328357 b := proc(n, x, t) option remember; `if`(n = 0, 1, add( `if`(t and x < i, 0, b(n - 1, i, i < x)), i = 0 .. n - 1)) end proc: a := n -> b(n, -1, false): seq(a(n), n = 0 .. 24);
-
Mathematica
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]]; a[n_] := b[n, -1, False]; a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
Comments