A328442 Number of inversion sequences of length n avoiding the consecutive pattern 210.
1, 1, 2, 6, 24, 118, 684, 4554, 34192, 285558, 2624496, 26315990, 285828324, 3342566724, 41869664320, 559265742918, 7934746600620, 119162454310392, 1888417811354292, 31492626988890798, 551302582228438512, 10107905106374914860, 193700015975819881008, 3872391687779493752340, 80623321999146782133372
Offset: 0
Keywords
Examples
Note that a(5)=118. Indeed, of the 120 inversion sequences of length 5, the only ones that do not avoid the consecutive patterns 210 are 00210 and 01210.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..460
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli and Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Crossrefs
Programs
-
Maple
# after Alois P. Heinz in A328357 b := proc(n, x, t) option remember; `if`(n = 0, 1, add( `if`(t and x < i, 0, b(n - 1, i, x < i)), i = 0 .. n - 1)) end proc: a := n -> b(n, n, false): seq(a(n), n = 0 .. 24);
-
Mathematica
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, x < i]], {i, 0, n - 1}]]; a[n_] := b[n, n, False]; a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)
Formula
a(n) ~ n! * c * (3^(3/2)/(2*Pi))^n * n^(2*Pi/3^(3/2)), where c = 0.24427562500895080639039917229089... - Vaclav Kotesovec, Oct 19 2019
Comments