cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276156 Numbers obtained by reinterpreting base-2 representation of n in primorial base: a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1 + A276154(a(n)).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 30, 31, 32, 33, 36, 37, 38, 39, 210, 211, 212, 213, 216, 217, 218, 219, 240, 241, 242, 243, 246, 247, 248, 249, 2310, 2311, 2312, 2313, 2316, 2317, 2318, 2319, 2340, 2341, 2342, 2343, 2346, 2347, 2348, 2349, 2520, 2521, 2522, 2523, 2526, 2527, 2528, 2529, 2550, 2551, 2552, 2553, 2556, 2557, 2558, 2559, 30030, 30031
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Comments

Numbers that are sums of distinct primorial numbers, A002110.
Numbers with no digits larger than one in primorial base, A049345.

Crossrefs

Complement of A177711.
Subsequences: A328233, A328832, A328462 (odd bisection).
Conjectured subsequences: A328110, A380527.
Fixed points of A328841, positions of zeros in A328828, A328842, and A329032, positions of ones in A328581, A328582, and A381032.
Positions of terms < 2 in A328114.
Indices where A327860 and A329029 coincide.
Cf. also table A328464 (and its rows).

Programs

  • Mathematica
    nn = 65; b = MixedRadix[Reverse@ Prime@ Range[IntegerLength[nn, 2] - 1]]; Table[FromDigits[IntegerDigits[n, 2], b], {n, 0, 65}] (* Version 10.2, or *)
    Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ IntegerDigits[n, 2], {n, 0, 65}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276156(n) = { my(s=0, p=1, r=1); while(n, if(n%2, s += r); n>>=1; p = nextprime(1+p); r *= p); (s); }; \\ Antti Karttunen, Feb 03 2022
  • Python
    from sympy import prime, primorial, primepi, factorint
    from operator import mul
    def a002110(n): return 1 if n<1 else primorial(n)
    def a276085(n):
        f=factorint(n)
        return sum([f[i]*a002110(primepi(i) - 1) for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) # after Chai Wah Wu
    def a(n): return 0 if n==0 else a276085(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1+A276154(a(n)).
Other identities. For all n >= 0:
a(n) = A276085(A019565(n)).
A049345(a(n)) = A007088(n).
A257993(a(n)) = A001511(n).
A276084(a(n)) = A007814(n).
A051903(a(n)) = A351073(n).

A328461 a(n) = A276156(n) / A002110(A007814(n)).

Original entry on oeis.org

1, 1, 3, 1, 7, 4, 9, 1, 31, 16, 33, 6, 37, 19, 39, 1, 211, 106, 213, 36, 217, 109, 219, 8, 241, 121, 243, 41, 247, 124, 249, 1, 2311, 1156, 2313, 386, 2317, 1159, 2319, 78, 2341, 1171, 2343, 391, 2347, 1174, 2349, 12, 2521, 1261, 2523, 421, 2527, 1264, 2529, 85, 2551, 1276, 2553, 426, 2557, 1279, 2559, 1, 30031, 15016, 30033, 5006
Offset: 1

Views

Author

Antti Karttunen, Oct 16 2019

Keywords

Comments

A276156(n) converts the binary expansion of n to a number whose primorial base representation has the same digits of 0's and 1's, thus each one of its terms is a unique sum of distinct primorial numbers. In this sequence that sum is then divided by the largest primorial that divides it, which only depends on the position of the least significant 1-bit in the binary expansion of the original n, that is, the 2-adic valuation of n.

Crossrefs

Cf. A328462 (bisection, also row 1 of array A328464 which shows the same information in tabular form).

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328461(n) = (A276156(n)/A002110(valuation(n,2)));

Formula

a(n) = A276156(n) / A002110(A007814(n)).
a(n) = A111701(A276156(n)).

A328464 Square array A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1), read by descending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 9, 16, 6, 1, 31, 19, 36, 8, 1, 33, 106, 41, 78, 12, 1, 37, 109, 386, 85, 144, 14, 1, 39, 121, 391, 1002, 155, 222, 18, 1, 211, 124, 421, 1009, 2432, 235, 324, 20, 1, 213, 1156, 426, 1079, 2443, 4200, 341, 438, 24, 1, 217, 1159, 5006, 1086, 2575, 4213, 7430, 457, 668, 30, 1, 219, 1171, 5011, 17018, 2586, 4421, 7447, 12674, 691, 900, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 16 2019

Keywords

Comments

Array is read by falling antidiagonals with n (row) and k (column) ranging as: (n,k) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
Row n contains all such sums of distinct primorials whose least significant summand is A002110(n-1), with each sum divided by that least significant primorial, which is also the largest primorial which divides that sum.

Examples

			Top left 9 X 11 corner of the array:
1: | 1,  3,   7,   9,    31,    33,    37,    39,    211,    213,    217
2: | 1,  4,  16,  19,   106,   109,   121,   124,   1156,   1159,   1171
3: | 1,  6,  36,  41,   386,   391,   421,   426,   5006,   5011,   5041
4: | 1,  8,  78,  85,  1002,  1009,  1079,  1086,  17018,  17025,  17095
5: | 1, 12, 144, 155,  2432,  2443,  2575,  2586,  46190,  46201,  46333
6: | 1, 14, 222, 235,  4200,  4213,  4421,  4434,  96578,  96591,  96799
7: | 1, 18, 324, 341,  7430,  7447,  7753,  7770, 215442, 215459, 215765
8: | 1, 20, 438, 457, 12674, 12693, 13111, 13130, 392864, 392883, 393301
9: | 1, 24, 668, 691, 20678, 20701, 21345, 21368, 765050, 765073, 765717
		

Crossrefs

Cf. A328463 (transpose).
Column 2: A008864.
Column 3: A023523 (after its initial term).
Column 4: A286624.
Cf. also arrays A276945, A286625.

Programs

  • PARI
    up_to = 105;
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328464sq(n,k) = (A276156((2^(n-1)) * (k+k-1)) / A002110(n-1));
    A328464list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A328464sq(col,(a-(col-1))))); (v); };
    v328464 = A328464list(up_to);
    A328464(n) = v328464[n];

Formula

A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1).
a(n) = A328461(A135764(n)). [When all sequences are considered as one-dimensional]

A328465 Row 2 of A328464: a(n) = A276156(4n - 2) / 2.

Original entry on oeis.org

1, 4, 16, 19, 106, 109, 121, 124, 1156, 1159, 1171, 1174, 1261, 1264, 1276, 1279, 15016, 15019, 15031, 15034, 15121, 15124, 15136, 15139, 16171, 16174, 16186, 16189, 16276, 16279, 16291, 16294, 255256, 255259, 255271, 255274, 255361, 255364, 255376, 255379, 256411, 256414, 256426, 256429, 256516, 256519, 256531
Offset: 1

Views

Author

Antti Karttunen, Oct 18 2019

Keywords

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328465(n) = (A276156((4*n)-2) / 2);

Formula

a(n) = (1/2) * A276156(4*n - 2).
Showing 1-4 of 4 results.