A328477 Lexicographically earliest infinite sequence such that a(i) = a(j) => A328469(A276086(i)) = A328469(A276086(j)) for all i, j.
1, 2, 3, 4, 5, 6, 7, 4, 8, 9, 10, 11, 12, 6, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 4, 8, 9, 10, 11, 28, 9, 29, 30, 31, 32, 33, 11, 31, 32, 34, 35, 36, 18, 37, 38, 39, 40, 41, 24, 42, 43, 44, 45, 46, 6, 10, 11, 13, 14, 33, 11, 31, 32, 34, 35, 47, 14, 34, 35, 48, 49, 50, 20, 39, 40, 51, 52, 53, 26, 44, 45, 54, 55, 56, 16, 17, 18, 19, 20, 36, 18
Offset: 0
Keywords
Examples
When written in primorial base (A049345), numbers 42 ("1200" as 42 = 1*A002110(3) + 2*A002110(2) + 0*A002110(1) + 0*A002110(0) = 1*30 + 2*6 + 0*2 + 0*1), 66 ("2100" as 66 = 2*30 + 1*6 + 0*2 + 0*1) and 222 ("10200" as 222 = 1*210 + 0*30 + 2*6 + 0*2 + 0*1) all have {1, 2} as their multiset of nonzero digits, and all have exactly two trailing zeros, thus they get an equal value in this sequence, namely a(42) = a(66) = a(222) = 33, where 33 is a running number allotted by the restricted growth sequence transform.
Links
Programs
-
PARI
up_to = 32768; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; Aux328469(n) = [A020639(n), A046523(n)]; Aux328477(n) = Aux328469(A276086(n)); v328477 = rgs_transform(vector(1+up_to, n, Aux328477(n-1))); A328477(n) = v328477[1+n];
Comments