A328504 Number of inversion sequences of length n avoiding the consecutive pattern 010.
1, 1, 2, 5, 17, 76, 417, 2701, 20199, 171329, 1624851, 17036586, 195685618, 2443572835, 32959210808, 477542545691, 7396931591165, 121976733648960, 2133460758692093, 39450254899737811, 768950119933799815, 15757352298761474101, 338663233082663363407
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 4.
Programs
-
Maple
b:= proc(n, j, t) option remember; `if`(n=0, 1, add( `if`(i>=j or i<>t, b(n-1, i, j), 0), i=1..n)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..25); # Alois P. Heinz, Oct 18 2019
-
Mathematica
b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i >= j || i != t, b[n - 1, i, j], 0], {i, 1, n}]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 25] (* Jean-François Alcover, Mar 12 2020, after Alois P. Heinz *)
Formula
a(n) ~ n! * c / sqrt(n), where c = 1.410641128930866501817126119... - Vaclav Kotesovec, Oct 19 2019