A328507 Number of inversion sequences of length n avoiding the consecutive pattern 101.
1, 1, 2, 6, 23, 109, 619, 4113, 31352, 269841, 2589026, 27404677, 317265161, 3988181568, 54099618419, 787705115000, 12253696410675, 202831037178017, 3559585021719875, 66018657264425355, 1290284788431977106, 26505045303122642171, 570918508059059670322
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 4.
Programs
-
Maple
b:= proc(n, j, t) option remember; `if`(n=0, 1, add( `if`(i<=j or i<>t, b(n-1, i, j), 0), i=1..n)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..25); # Alois P. Heinz, Oct 18 2019
-
Mathematica
b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i <= j || i != t, b[n-1, i, j], 0], {i, 1, n}]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 25] (* Jean-François Alcover, Mar 19 2020, after Alois P. Heinz *)
Formula
a(n) ~ n! * c / sqrt(n), where c = 2.48988835987151440021135203237... - Vaclav Kotesovec, Oct 19 2019