A328509 Number of non-unimodal sequences of length n covering an initial interval of positive integers.
0, 0, 0, 3, 41, 425, 4287, 45941, 541219, 7071501, 102193755, 1622448861, 28090940363, 526856206877, 10641335658891, 230283166014653, 5315654596751659, 130370766738143517, 3385534662263335179, 92801587315936355325, 2677687796232803000171, 81124824998464533181661
Offset: 0
Keywords
Examples
The a(3) = 3 sequences are (2,1,2), (2,1,3), (3,1,2). The a(4) = 41 sequences: (1212) (2113) (2134) (2413) (3142) (3412) (1213) (2121) (2143) (3112) (3212) (4123) (1312) (2122) (2212) (3121) (3213) (4132) (1323) (2123) (2213) (3122) (3214) (4213) (1324) (2131) (2312) (3123) (3231) (4231) (1423) (2132) (2313) (3124) (3241) (4312) (2112) (2133) (2314) (3132) (3312)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Unimodal Sequence.
Crossrefs
Not requiring non-unimodality gives A000670.
The complement is counted by A007052.
The case where the negation is not unimodal either is A332873.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Covering partitions with unimodal run-lengths are A332577.
Non-unimodal compositions covering an initial interval are A332743.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&]],{n,0,5}]
-
PARI
seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 3*x + x^2)/(1 - 4*x + 2*x^2), -(n+1)) \\ Andrew Howroyd, Jan 28 2024
Formula
Extensions
a(9) from Robert Price, Jun 19 2021
a(10) onwards from Andrew Howroyd, Jan 28 2024
Comments