cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328525 Numbers k such that (k-1)*k*(k+1) = (k-1)*(1+u) = k*(1+v) = (k+1)*(1+w) with primes u, v, w.

Original entry on oeis.org

3, 5, 9, 21, 55, 131, 145, 155, 231, 259, 265, 449, 495, 561, 595, 1045, 1051, 1365, 1409, 1491, 1549, 1849, 1989, 2001, 2101, 2469, 2785, 3365, 3621, 3641, 3669, 3845, 3911, 4285, 4951, 5181, 5465, 6049, 6699, 7189, 7229, 8219, 8629, 9175, 9521, 9539, 9631, 9729
Offset: 1

Views

Author

Frank Ellermann, Feb 24 2020

Keywords

Examples

			3 is a term because 2*3*4 = 2*(1+11) = 3*(1+7) = 4*(1+5) with primes 11, 7, 5.
9 is a term because 8*9*10 = 8*(1+89) = 9*(1+79) = 10*(1+71) with primes 89, 79, 71.
		

Crossrefs

Cf. A000040.
Intersection of A002328, A028870 and A045546.

Programs

  • Maple
    q:= k-> andmap(isprime, (t-> [t-1, t-k, t+k])(k^2-1)):
    select(q, [$1..10000])[];  # Alois P. Heinz, Feb 25 2020
  • Mathematica
    Select[Range[2, 10^4], AllTrue[{(# - 1)*#, #*(# + 1), (# + 1)*(# - 1)} - 1, PrimeQ] &] (* Amiram Eldar, Feb 24 2020 *)
  • PARI
    isok(k) = isprime(k*(k+1)-1) && isprime((k+1)*(k-1)-1) && isprime(k*(k-1)-1); \\ Michel Marcus, Feb 25 2020
  • Rexx
    S = 3
    do N = 5 to 595 by 2
       if NOPRIME( N*N +N -1 ) then  iterate N
       if NOPRIME( N*N    -2 ) then  iterate N
       if NOPRIME( N*N -N -1 ) then  iterate N
       S = S || ',' N
    end N
    say S
    

Extensions

More terms from Amiram Eldar, Feb 24 2020