A328595 Numbers whose reversed binary expansion is a necklace.
1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 48, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 88, 92, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 152, 160, 164, 168, 170, 172, 176, 180
Offset: 1
Examples
The sequence of terms together with their binary expansions and binary indices begins: 1: 1 ~ {1} 2: 10 ~ {2} 3: 11 ~ {1,2} 4: 100 ~ {3} 6: 110 ~ {2,3} 7: 111 ~ {1,2,3} 8: 1000 ~ {4} 10: 1010 ~ {2,4} 12: 1100 ~ {3,4} 14: 1110 ~ {2,3,4} 15: 1111 ~ {1,2,3,4} 16: 10000 ~ {5} 20: 10100 ~ {3,5} 24: 11000 ~ {4,5} 26: 11010 ~ {2,4,5} 28: 11100 ~ {3,4,5} 30: 11110 ~ {2,3,4,5} 31: 11111 ~ {1,2,3,4,5} 32: 100000 ~ {6} 36: 100100 ~ {3,6}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Select[Range[100],neckQ[Reverse[IntegerDigits[#,2]]]&]
-
Python
from itertools import count, islice from sympy.utilities.iterables import necklaces def a_gen(): for n in count(1): t = [] for i in necklaces(n,2): if sum(i)>0: t.append(sum(2**j for j in range(len(i)) if i[j] > 0)) yield from sorted(t) A328595_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024
Comments