A328601 Number of necklace compositions of n with no part circularly followed by a divisor or a multiple.
0, 0, 0, 0, 1, 0, 2, 1, 2, 5, 4, 7, 6, 13, 14, 20, 30, 38, 50, 68, 97, 132, 176, 253, 328, 470, 631, 901, 1229, 1709, 2369, 3269, 4590, 6383, 8897, 12428, 17251, 24229, 33782, 47404, 66253, 92859, 130141, 182468, 256261, 359675, 505230, 710058, 997952, 1404214
Offset: 1
Keywords
Examples
The a(5) = 1 through a(13) = 6 necklace compositions (empty column not shown): (2,3) (2,5) (3,5) (2,7) (3,7) (2,9) (5,7) (4,9) (3,4) (4,5) (4,6) (3,8) (2,3,7) (5,8) (2,3,5) (4,7) (2,7,3) (6,7) (2,5,3) (5,6) (3,4,5) (2,11) (2,3,2,3) (3,5,4) (3,10) (2,3,2,5) (2,3,5,3) (2,3,4,3)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]&&And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]&]],{n,10}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q,]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i,j)->i%j<>0 && j%i<>0))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019
Formula
a(n) = A318730(n) - 1.
Extensions
Terms a(26) and beyond from Andrew Howroyd, Oct 26 2019
Comments